IDEAS home Printed from https://ideas.repec.org/p/eth/wpswif/17-265.html
   My bibliography  Save this paper

Uncertainty Quantification and Global Sensitivity Analysis for Economic Models

Author

Listed:
  • Daniel Harenberg

    (ETH Zurich, Switzerland)

  • Stefano Marelli

    (ETH Zurich, Switzerland)

  • Bruno Sudret

    (ETH Zurich, Switzerland)

  • Viktor Winschel

    (ETH Zurich, Switzerland)

Abstract

Sensitivity analysis assesses the influence of input parameters on the conclusion of a model. Traditional analysis methods—based on evaluating the model at a reference parameter vector and changing one parameter at a time—are local, linear, and usually do not capture interactions among the parameters. By contrast, the global sensitivity analysis that we present summarizes the parameters’ importance over a range of values, fully capturing nonlinearities and identifying interactions. Specifically, we propose Sobol’ indices, which are based on variance decomposition, and exemplify their use with a standard real business cycle model. Standard approaches to variance decomposition require a large number of model evaluations. To overcome this, we present the state-of-the-art approach for calculating Sobol’ indices, which is based on building a polynomial representation of the model from a limited number of evaluations. In addition, we use this polynomial representation to evaluate the univariate effects, which are conditional expectation functions that can be interpreted as a robust impact of a parameter on the model conclusions.

Suggested Citation

  • Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2017. "Uncertainty Quantification and Global Sensitivity Analysis for Economic Models," CER-ETH Economics working paper series 17/265, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  • Handle: RePEc:eth:wpswif:17-265
    as

    Download full text from publisher

    File URL: https://www.ethz.ch/content/dam/ethz/special-interest/mtec/cer-eth/cer-eth-dam/documents/working-papers/WP-17-265.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kydland, Finn E., 1992. "On the econometrics of world business cycles," European Economic Review, Elsevier, vol. 36(2-3), pages 476-482, April.
    2. Juillard, Michel & Villemot, Sébastien, 2011. "Multi-country real business cycle models: Accuracy tests and test bench," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 178-185, February.
    3. Gregory, Allan W & Smith, Gregor W, 1995. "Business Cycle Theory and Econometrics," Economic Journal, Royal Economic Society, vol. 105(433), pages 1597-1608, November.
    4. Harrison, Glenn W & Vinod, H D, 1992. "The Sensitivity Analysis of Applied General Equilibrium Models: Completely Randomized Factorial Sampling Designs," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 357-362, May.
    5. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    6. Den Haan, Wouter J. & Judd, Kenneth L. & Juillard, Michel, 2011. "Computational suite of models with heterogeneous agents II: Multi-country real business cycle models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 175-177, February.
    7. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    8. Viktor Winschel & Markus Kr‰tzig, 2010. "Solving, Estimating, and Selecting Nonlinear Dynamic Models Without the Curse of Dimensionality," Econometrica, Econometric Society, vol. 78(2), pages 803-821, March.
    9. Eichenbaum, Martin, 1991. "Real business-cycle theory : Wisdom or whimsy?," Journal of Economic Dynamics and Control, Elsevier, vol. 15(4), pages 607-626, October.
    10. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    11. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    12. Canova, Fabio, 1994. "Statistical Inference in Calibrated Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(S), pages 123-144, Suppl. De.
    13. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    14. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
    15. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    16. Viktor Winschel, 2005. "Solving, Estimating and Selecting Nonlinear Dynamic Economic Models without the Curse of Dimensionality," GE, Growth, Math methods 0507014, University Library of Munich, Germany.
    17. Johannes Brumm & Simon Scheidegger, 2017. "Using Adaptive Sparse Grids to Solve High‐Dimensional Dynamic Models," Econometrica, Econometric Society, vol. 85, pages 1575-1612, September.
    18. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    19. Canova, Fabio, 1995. "Sensitivity Analysis and Model Evaluation in Simulated Dynamic General Equilibrium Economies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 36(2), pages 477-501, May.
    20. Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2021. "Versatile forward guidance: escaping or switching?," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Yongyang Cai, 2020. "The Role of Uncertainty in Controlling Climate Change," Papers 2003.01615, arXiv.org, revised Oct 2020.
    3. Xueping Chen & Yujie Gai & Xiaodi Wang, 2023. "A-optimal designs for non-parametric symmetrical global sensitivity analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(2), pages 219-237, February.
    4. Philipp Eisenhauer & Lena Janys & Christopher Walsh & Janós Gabler, 2023. "Structural Models for Policy-Making," CRC TR 224 Discussion Paper Series crctr224_2023_484, University of Bonn and University of Mannheim, Germany.
    5. Thomas H. Jørgensen, 2023. "Sensitivity to Calibrated Parameters," The Review of Economics and Statistics, MIT Press, vol. 105(2), pages 474-481, March.
    6. Daniel Fehrle & Christopher Heiberger & Johannes Huber, 2020. "Polynomial chaos expansion: Efficient evaluation and estimation of computational models," Discussion Paper Series 341, Universitaet Augsburg, Institute for Economics.
    7. Simon Dietz & Bruno Lanz, 2019. "Growth and Adaptation to Climate Change in the Long Run," CESifo Working Paper Series 7986, CESifo.
    8. Zahir Barahmand & Marianne S. Eikeland, 2022. "Techno-Economic and Life Cycle Cost Analysis through the Lens of Uncertainty: A Scoping Review," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    9. Philipp Eisenhauer & Janos Gabler & Lena Janys, 2021. "Structural Models for Policy-Making: Coping with Parametric Uncertainty," ECONtribute Discussion Papers Series 082, University of Bonn and University of Cologne, Germany.
    10. Eisenhauer, Philipp & Gabler, Janos & Janys, Lena, 2021. "Structural Models for Policy-Making: Coping with Parametric Uncertainty," IZA Discussion Papers 14317, Institute of Labor Economics (IZA).
    11. Philipp Eisenhauer & Jano's Gabler & Lena Janys & Christopher Walsh, 2021. "Structural models for policy-making: Coping with parametric uncertainty," Papers 2103.01115, arXiv.org, revised Jun 2022.
    12. Miftakhova, Alena, 2021. "Global sensitivity analysis for optimal climate policies: Finding what truly matters," Economic Modelling, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miftakhova, Alena, 2021. "Global sensitivity analysis for optimal climate policies: Finding what truly matters," Economic Modelling, Elsevier, vol. 105(C).
    2. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    3. Alfonso Novales, 2000. "The role of simulation methods in Macroeconomics," Spanish Economic Review, Springer;Spanish Economic Association, vol. 2(3), pages 155-181.
    4. Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2021. "Versatile forward guidance: escaping or switching?," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    5. Komunjer, Ivana & Zhu, Yinchu, 2020. "Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 218(2), pages 561-586.
    6. Fabio Canova & Eva Ortega, 1996. "Testing calibrated general equilibrium models," Economics Working Papers 166, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Cozzi, Marco, 2014. "Equilibrium Heterogeneous-Agent models as measurement tools: Some Monte Carlo evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 208-226.
    8. Aryan Eftekhari & Simon Scheidegger, 2022. "High-Dimensional Dynamic Stochastic Model Representation," Papers 2202.06555, arXiv.org.
    9. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    10. Borgonovo, Emanuele & Clemente, Gian Paolo & Rabitti, Giovanni, 2024. "Why insurance regulators need to require sensitivity settings of internal models for their approval," Finance Research Letters, Elsevier, vol. 60(C).
    11. Vo Le & David Meenagh & Patrick Minford & Michael Wickens & Yongdeng Xu, 2016. "Testing Macro Models by Indirect Inference: A Survey for Users," Open Economies Review, Springer, vol. 27(1), pages 1-38, February.
    12. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    13. Carlo Alberto Magni & Andrea Marchioni, 2022. "Performance attribution, time-weighted rate of return, and clean finite change sensitivity index," Journal of Asset Management, Palgrave Macmillan, vol. 23(1), pages 62-72, February.
    14. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    15. Yongyang Cai & Kenneth Judd & Jevgenijs Steinbuks, 2017. "A nonlinear certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 8(1), pages 117-147, March.
    16. Le, Vo Phuong Mai & Meenagh, David & Minford, Patrick & Wickens, Michael, 2015. "Small sample performance of indirect inference on DSGE models," Cardiff Economics Working Papers E2015/2, Cardiff University, Cardiff Business School, Economics Section.
    17. Patrick Fève, 1997. "Les méthodes d'étalonnage au regard de l'économétrie," Revue Économique, Programme National Persée, vol. 48(3), pages 629-638.
    18. Cristiano Cantore & Filippo Ferroni & Miguel León-Ledesma, 2021. "The Missing Link: Monetary Policy and The Labor Share," Journal of the European Economic Association, European Economic Association, vol. 19(3), pages 1592-1620.
    19. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    20. Touhami Abdelkhalek & Jean-Marie Dufour, 1998. "Statistical Inference For Computable General Equilibrium Models, With Application To A Model Of The Moroccan Economy," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 520-534, November.

    More about this item

    Keywords

    computational techniques; uncertainty quantification; global sensitivity analysis;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eth:wpswif:17-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iwethch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.