IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014269.html
   My bibliography  Save this article

Preparation of low-nitrogen bio-oil from co-pyrolysis of waste tobacco stem and corn stalk: Product characteristics and denitrogenation mechanism

Author

Listed:
  • Bai, Jing
  • Huang, Guilin
  • Qiu, Chenxu
  • Shang, Xutao
  • Sun, Zihui
  • Hu, Junhao
  • Chang, Chun

Abstract

Substances such as nicotine and tobacco proteins in waste tobacco stem (TS) could result in higher content of nitrogenous compounds and lower calorific value and cleanness in the pyrolysis bio-oil. This study focused on the co-pyrolysis of TS with corn stalk (CS) to investigate the product characteristics and denitrogenation effects during the co-pyrolysis process. The results indicated that co-pyrolysis of TS with CS remarkably reduced nitrogenous compounds from 43.75 % to 6.42 % in bio-oil, at a 1:1 blending ratio of TS and CS. With the addition of CS, the most of nitrogen-containing and oxygen-containing compounds were removed from bio-oil. Co-pyrolysis of TS with three main components in biomass was also conducted. It revealed that the lignin component in the CS played a key role in bio-oil denitrogenation during co-pyrolysis. When the blending ratio of TS and lignin was 1:1, 39.45 % of nitrogenous compounds in the bio-oil was reduced. Lignin promoted the amino migrates from bio-oil to gas and char.

Suggested Citation

  • Bai, Jing & Huang, Guilin & Qiu, Chenxu & Shang, Xutao & Sun, Zihui & Hu, Junhao & Chang, Chun, 2024. "Preparation of low-nitrogen bio-oil from co-pyrolysis of waste tobacco stem and corn stalk: Product characteristics and denitrogenation mechanism," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014269
    DOI: 10.1016/j.energy.2024.131653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    2. Shen, Qian & Zhu, Xianqing & Peng, Yang & Xu, Mian & Huang, Yun & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass," Energy, Elsevier, vol. 295(C).
    3. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    4. Esin Apaydın Varol & Ülker Mutlu, 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin," Energies, MDPI, vol. 16(9), pages 1-19, April.
    5. Bai, Jing & Gao, Hang & Xu, Junhao & Li, Lefei & Zheng, Peng & Li, Pan & Song, Jiande & Chang, Chun & Pang, Shusheng, 2022. "Comprehensive study on the pyrolysis product characteristics of tobacco stems based on a novel nitrogen-enriched pyrolysis method," Energy, Elsevier, vol. 242(C).
    6. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chunxiang & Zhao, Shiyi & Qiu, Hongfu & Yang, Ronglin & Wan, Shouqiang & He, Shiyuan & Shi, Haosen & Zhu, Qi, 2024. "Characterization and bio-oil analysis of microalgae and waste tires by microwave catalytic co-pyrolysis," Energy, Elsevier, vol. 302(C).
    2. Shi, Xiaopeng & Wang, Biao & Hu, Junhao & Chen, Wei & Chang, Chun & Pang, Shusheng & Li, Pan, 2023. "Investigating the synergistic driving action of microwave and char-based multi-catalysts on biomass catalytic pyrolysis into value-added bio-products," Renewable Energy, Elsevier, vol. 219(P2).
    3. Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
    4. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    5. Zhu, Xianqing & Xu, Mian & Hu, Shiyang & Xia, Ao & Huang, Yun & Luo, Zhang & Xue, Xiao & Zhou, Yao & Zhu, Xun & Liao, Qiang, 2024. "A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene," Applied Energy, Elsevier, vol. 367(C).
    6. Alex Borges Pereira & Antonio José Vinha Zanuncio & Amélia Guimarães Carvalho & Angélica de Cassia Oliveira Carneiro & Vinícius Resende de Castro & Ana Marcia Macedo Ladeira Carvalho & Olivia Pereira , 2024. "Sustainable Solid Biofuel Production: Transforming Sewage Sludge and Pinus sp. Sawdust into Resources for the Circular Economy," Sustainability, MDPI, vol. 16(11), pages 1-11, May.
    7. Yao, Qiuxiang & He, Lei & Ma, Duo & Wang, Linyang & Ma, Li & Chen, Huiyong & Hao, Qingqing & Sun, Ming, 2024. "Cracking of heavy-inferior oils with different alkane-aromatic ratios to aromatics over MFI zeolites:Structure-activity relationship derived by machine learning," Energy, Elsevier, vol. 289(C).
    8. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    9. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    10. Huang, Dexin & Song, Gongxiang & Li, Ruochen & Han, Hengda & He, Limo & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Evolution mechanisms of bio-oil from conventional and nitrogen-rich biomass during photo-thermal pyrolysis," Energy, Elsevier, vol. 282(C).
    11. Bai, Jing & Li, Lefei & Chen, Zhiyong & Chang, Chun & Pang, Shusheng & Li, Pan, 2023. "Study on the optimization of hydrothermal liquefaction performance of tobacco stem and the high value utilization of catalytic products," Energy, Elsevier, vol. 281(C).
    12. Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Yang, Shi-guan & Zhou, Jia-le & Hu, Zhuang & Zhou, Xin-yue & Cai, Qi & Xie, Jin-heng & Wu, Yang-wen & Lu, Qiang, 2023. "Site selection decision framework for biomass pyrolysis project based on a mixed method under probabilistic linguistic environment and low carbon perspective: A case study in China," Energy, Elsevier, vol. 272(C).
    16. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    17. Antolini, Ermete, 2016. "Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 34-51.
    18. Li, Boyu & Fan, Xing & Yu, Senshen & Xia, Hongying & Nong, Yonghong & Bian, Junping & Sun, Mingyu & Zi, Wenhua, 2023. "Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study," Energy, Elsevier, vol. 274(C).
    19. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    20. Chen, Mingqiang & Li, Hong & Wang, Yishuang & Tang, Zhiyuan & Dai, Wei & Li, Chang & Yang, Zhonglian & Wang, Jun, 2023. "Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.