IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014812.html
   My bibliography  Save this article

Simultaneous regulation of nitrogen, sulfur and carbon using biochar during sewage sludge pyrolysis

Author

Listed:
  • Yao, Zhitong
  • Chen, Xinyang
  • Sun, Yuhang
  • Qi, Wei

Abstract

Due to the complex nature of sewage sludge (SS), how to control the emission of precursor pollutants during its pyrolysis remains a challenge. In this work, the evolution of N, S and C during SS pyrolysis was investigated and biochars were employed to regulate their distribution in the resulting products. The release of N-containing products followed a descending order of NH3>HCN > NO > NO2 and the biochar addition resulted in a reduction of 40.7–54.3 % for these volatiles. The nitrile-N and pyrrolic-N species decreased, while the quaternary-N in residue increased significantly. The emission of S-containing products showed a descending order of COS > SO2>CH3SH > H2S > CS2 and the co-pyrolysis with biochar showed a reduction of 40.6–65.7 % for these products. The relative contents of thiophene-S and sulfoxide-S species increased, while the content of sulfone-S decreased. Biochar incorporation also resulted in a reduction of 67.2 % and 47.4 % for CO and CO2, respectively. Both Raman and XPS analysis indicated an increase in the graphitization degree and a decrease in structural defects.

Suggested Citation

  • Yao, Zhitong & Chen, Xinyang & Sun, Yuhang & Qi, Wei, 2024. "Simultaneous regulation of nitrogen, sulfur and carbon using biochar during sewage sludge pyrolysis," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014812
    DOI: 10.1016/j.renene.2024.121413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Jing & Gao, Hang & Xu, Junhao & Li, Lefei & Zheng, Peng & Li, Pan & Song, Jiande & Chang, Chun & Pang, Shusheng, 2022. "Comprehensive study on the pyrolysis product characteristics of tobacco stems based on a novel nitrogen-enriched pyrolysis method," Energy, Elsevier, vol. 242(C).
    2. Tang, Siqi & Zheng, Chunmiao & Yan, Feng & Shao, Ningning & Tang, Yuanyuan & Zhang, Zuotai, 2018. "Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals," Energy, Elsevier, vol. 153(C), pages 921-932.
    3. Guo, Shuai & Liu, Tiecheng & Hui, Jicheng & Che, Deyong & Li, Xingcan & Sun, Baizhong & Li, Shaohua, 2019. "Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis," Energy, Elsevier, vol. 189(C).
    4. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    5. Folgueras, M.B. & Alonso, M. & Díaz, R.M., 2013. "Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge," Energy, Elsevier, vol. 55(C), pages 426-435.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksandra Petrovič & Sabina Vohl & Tjaša Cenčič Predikaka & Robert Bedoić & Marjana Simonič & Irena Ban & Lidija Čuček, 2021. "Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar," Sustainability, MDPI, vol. 13(17), pages 1-34, August.
    2. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.
    3. Taran Loper & Victoria L. Crittenden, 2017. "Energy Security: Shaping The Consumer Decision Making Process In Emerging Economies," Organizations and Markets in Emerging Economies, Faculty of Economics, Vilnius University, vol. 8(1).
    4. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    5. Hong, Yanran & Cao, Shijiao & Xu, Pengfei & Pan, Zhigang, 2024. "Interpreting the effect of global economic risks on crude oil market: A supply-demand perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    6. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    7. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    9. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    10. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    11. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    12. Mohsin, Muhammad & Jamaani, Fouad, 2023. "Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning," Resources Policy, Elsevier, vol. 85(PA).
    13. Tariq Muneer & Rory Dowell, 2022. "Potential for renewable energy–assisted harvesting of potatoes in Scotland [Energy supply, its demands and security issues for developed and emerging economies]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 469-481.
    14. Fahad Bin Abdullah & Rizwan Iqbal & Falak Shad Memon & Sadique Ahmad & Mohammed A. El-Affendi, 2023. "Advancing Sustainability in the Power Distribution Industry: An Integrated Framework Analysis," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    15. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    16. Shao, Yanmin & Qiao, Han & Wang, Shouyang, 2017. "What determines China's crude oil importing trade patterns? Empirical evidences from 55 countries between 1992 and 2015," Energy Policy, Elsevier, vol. 109(C), pages 854-862.
    17. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M. & Jiang, Lide & French, Steven P. & Shi, Xuan & Smith, Brennan T. & Neary, Vincent S. & Stewart, Kevin M., 2012. "National geodatabase of tidal stream power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3326-3338.
    18. García Kerdan, Iván & Morillón Gálvez, David & Raslan, Rokia & Ruyssevelt, Paul, 2015. "Modelling the energy and exergy utilisation of the Mexican non-domestic sector: A study by climatic regions," Energy Policy, Elsevier, vol. 77(C), pages 191-206.
    19. Hokey Min & Yohannes Haile, 2021. "Examining the Role of Disruptive Innovation in Renewable Energy Businesses from a Cross National Perspective," Energies, MDPI, vol. 14(15), pages 1-19, July.
    20. Su, Chi-Wei & Yuan, Xi & Umar, Muhammad & Chang, Tsangyao, 2022. "Dynamic price linkage of energies in transformation: Evidence from quantile connectedness," Resources Policy, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.