IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924008031.html
   My bibliography  Save this article

A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene

Author

Listed:
  • Zhu, Xianqing
  • Xu, Mian
  • Hu, Shiyang
  • Xia, Ao
  • Huang, Yun
  • Luo, Zhang
  • Xue, Xiao
  • Zhou, Yao
  • Zhu, Xun
  • Liao, Qiang

Abstract

Introducing waste plastics with high hydrogen contents (such as polyethylene) into the biomass gasification process is an effective way to upgrade the syngas. Despite their good catalytic abilities, some of the transition metals commonly applied for the co-gasification of biomass and plastic wastes are of high cost and have poor availability, which requires developing affordable transition metal-based catalysts with desirable catalytic performances for producing H2-rich syngas. Spent lithium-ion batteries, which have a huge annual output and pose a great threat to the environment, contain a high potential to prepare efficient catalysts for biomass and plastic co-gasification due to the richness of active transition metals (e.g., Ni, Co and Mn). Therefore, in this study, a novel Ni/Co/Mn-loaded mesoporous Al2O3 catalyst was developed from the thermally decomposed spent LiNixCoyMn1−x−yO2 batteries (spent LIBs) for pinewood sawdust and polyethylene co-gasification as an effective means to achieve the zero-waste strategy. The results showed that Ni, Co and Mn could be non-selectively recycled from spent LIBs and uniformly loaded on γ-Al2O3 support, and the support's mesopores were well-retained (average pore diameters around 11 nm). The highest H2 productivity of the co-gasification could reach 17.16 mmol g−1 with a concentration of 36 vol% over the LIB-modified Al2O3. The modification by spent LIBs would enhance the catalyst's relative concentrations of acid-base sites in high-temperature regions, leading to the significant promotion of H2 productivity from 600 to 800 °C (151.3%). Nickel and manganese in the LIBs were primarily responsible for the catalysis since their nanosized particles could endow the catalyst with accessible and reducible metallic sites for volatile reforming. The synergy among the Ni, Co and Mn could evidently intensify the oxygen vacancies of the LIB-modified Al2O3 to promote the oxygen transfer reactions from steam to dissociative species for H2 production. This study provided a novel and promising technology for synergistic valorization of spent lithium-ion batteries, biomass residues and plastic wastes to produce value-added H2-rich syngas.

Suggested Citation

  • Zhu, Xianqing & Xu, Mian & Hu, Shiyang & Xia, Ao & Huang, Yun & Luo, Zhang & Xue, Xiao & Zhou, Yao & Zhu, Xun & Liao, Qiang, 2024. "A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008031
    DOI: 10.1016/j.apenergy.2024.123420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    2. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    3. Shen, Qian & Zhu, Xianqing & Peng, Yang & Xu, Mian & Huang, Yun & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass," Energy, Elsevier, vol. 295(C).
    4. Wang, Yishuang & Liang, Defang & Wang, Chunsheng & Chen, Mingqiang & Tang, Zhiyuan & Hu, Jiaxin & Yang, Zhonglian & Zhang, Han & Wang, Jun & Liu, Shaomin, 2020. "Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol," Renewable Energy, Elsevier, vol. 160(C), pages 597-611.
    5. Situmorang, Yohanes Andre & Zhao, Zhongkai & An, Ping & Yu, Tao & Rizkiana, Jenny & Abudula, Abuliti & Guan, Guoqing, 2020. "A novel system of biomass-based hydrogen production by combining steam bio-oil reforming and chemical looping process," Applied Energy, Elsevier, vol. 268(C).
    6. Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.
    7. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2022. "Downdraft co-gasification of high ash biomass and plastics," Energy, Elsevier, vol. 243(C).
    9. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    10. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    3. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    4. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    5. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    6. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    7. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    8. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    9. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.
    10. Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Matteo Baldelli & Lorenzo Bartolucci & Stefano Cordiner & Giorgio D’Andrea & Emanuele De Maina & Vincenzo Mulone, 2023. "Biomass to H2: Evaluation of the Impact of PV and TES Power Supply on the Performance of an Integrated Bio-Thermo-Chemical Upgrading Process for Wet Residual Biomass," Energies, MDPI, vol. 16(7), pages 1-17, March.
    12. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    13. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    14. Fugang Zhu & Laihong Shen & Pengcheng Xu & Haoran Yuan & Ming Hu & Jingwei Qi & Yong Chen, 2022. "Numerical Simulation of an Improved Updraft Biomass Gasifier Based on Aspen Plus," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    15. Octávio Alves & Bruno Garcia & Bruna Rijo & Gonçalo Lourinho & Catarina Nobre, 2022. "Market Opportunities in Portugal for the Water-and-Waste Sector Using Sludge Gasification," Energies, MDPI, vol. 15(18), pages 1-16, September.
    16. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    17. Chen, Guanyi & Dong, Xiaoshan & Yan, Beibei & Li, Jian & Yoshikawa, Kunio & Jiao, Liguo, 2022. "Photothermal steam reforming: A novel method for tar elimination in biomass gasification," Applied Energy, Elsevier, vol. 305(C).
    18. Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
    19. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Mohamad Yusof Idroas & Thanh Danh Le & Huu Tho Nguyen, 2022. "Experimental Studies of Combustion and Emission Characteristics of Biomass Producer Gas (BPG) in a Constant Volume Combustion Chamber (CVCC) System," Energies, MDPI, vol. 15(21), pages 1-18, October.

    More about this item

    Keywords

    Spent LIBs; Biomass and plastic; Co-gasification; Steam reforming; H2 production;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.