IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221025792.html
   My bibliography  Save this article

Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose

Author

Listed:
  • Hakimian, Hanie
  • Pyo, Sumin
  • Kim, Young-Min
  • Jae, Jungho
  • Show, Pau Loke
  • Rhee, Gwang Hoon
  • Chen, Wei-Hsin
  • Park, Young-Kwon

Abstract

In this study, the use of oil sludge as the co-feeding feedstock on the catalytic pyrolysis of cellulose over various catalysts, such as Ni/HZSM-5, HZSM-5, HBeta, HY, and Al-MCM-41, was attempted for the first time. To know the catalytic co-pyrolysis effect, thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry measurement were utilized. Thermogravimetric analysis results indicated that Ni/HZSM-5 led to the lowest apparent activation energy (97.6 kJ/mol), followed by HY, HBeta, HZSM-5, and Al-MCM-41, suggesting the effective role of Ni providing the additional cracking and benzene, toluene, ethylbenzene and xylenes (BTEXs) formation. In addition, BTEXs production amount analyzed by pyrolyzer-gas chromatography/mass spectrometry was also highest by the use of Ni/HZSM-5 due to its proper pore size of HZSM-5 on BTEXs formation and additional effect of Ni. The experimental BTEXs yields on the catalytic co-pyrolysis of cellulose and oil sludge were higher than their theoretical values over all catalysts, suggesting their synergy effect. The highest synergistic effect was also achieved when 1/3 of cellulose/oil sludge mixture was applied as the feedstock.

Suggested Citation

  • Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025792
    DOI: 10.1016/j.energy.2021.122331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chien Li Lee & Cheng-Hsien Tsai & Chih-Ju G. Jou, 2020. "Energy and Resource Utilization of Refining Industry Oil Sludge by Microwave Treatment," Sustainability, MDPI, vol. 12(17), pages 1-9, August.
    2. Cheng, Shuo & Wang, Yuhua & Fumitake, Takahashi & Kouji, Tokimatsu & Li, Aimin & Kunio, Yoshikawa, 2017. "Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis," Applied Energy, Elsevier, vol. 185(P1), pages 146-157.
    3. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    4. Teng, Sin Yong & Loy, Adrian Chun Minh & Leong, Wei Dong & How, Bing Shen & Chin, Bridgid Lai Fui & Máša, Vítězslav, 2019. "Catalytic thermal degradation of Chlorella Vulgaris: Evolving deep neural networks for optimization," MPRA Paper 95772, University Library of Munich, Germany.
    5. Zhang, Shuping & Yin, Haoxin & Wang, Jiaxing & Zhu, Shuguang & Xiong, Yuanquan, 2021. "Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts," Energy, Elsevier, vol. 216(C).
    6. Ryu, Hae Won & Lee, Hyung Won & Jae, Jungho & Park, Young-Kwon, 2019. "Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst," Energy, Elsevier, vol. 179(C), pages 669-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Yongsheng & Lu, Dongsheng & Han, Yue & Yang, Jiaheng & Qian, Cheng & Li, Binyu, 2023. "Production of light aromatics from biomass components co-pyrolyzed with polyethylene via non-thermal plasma synergistic upgrading," Energy, Elsevier, vol. 265(C).
    2. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    3. Qinghong Li & Huan Yang & Ping Chen & Wenxue Jiang & Fei Chen & Xiaorong Yu & Gaoshen Su, 2023. "Investigation of Catalytic Co-Pyrolysis Characteristics and Synergistic Effect of Oily Sludge and Walnut Shell," IJERPH, MDPI, vol. 20(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyuan Qi & Huayi Jiang & Yanzhen You & Juan Hu & Yulong Wang & Zhe Wu & Hongxin Qi, 2022. "Mechanism of Magnetic Nanoparticle Enhanced Microwave Pyrolysis for Oily Sludge," Energies, MDPI, vol. 15(4), pages 1-22, February.
    2. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    3. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    4. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    6. Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
    7. Yao, Qiuxiang & He, Lei & Ma, Duo & Wang, Linyang & Ma, Li & Chen, Huiyong & Hao, Qingqing & Sun, Ming, 2024. "Cracking of heavy-inferior oils with different alkane-aromatic ratios to aromatics over MFI zeolites:Structure-activity relationship derived by machine learning," Energy, Elsevier, vol. 289(C).
    8. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    9. Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
    10. Wang, Biao & Chen, Yasen & Chen, Wei & Hu, Junhao & Chang, Chun & Pang, Shusheng & Li, Pan, 2024. "Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field," Energy, Elsevier, vol. 293(C).
    11. Bong, Jang Tyng & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & Lam, Man Kee & Tang, Daniel Kuok Ho & Lim, Huei Yeong & Chai, Yee Ho & Yusup, Suzana, 2020. "Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst," Energy, Elsevier, vol. 207(C).
    12. Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).
    13. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    14. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    15. Li, Xueqin & Liu, Peng & Lei, Tingzhou & Wu, Youqing & Chen, Wenxuan & Wang, Zhiwei & Shi, Jie & Wu, Shiyong & Li, Yanling & Huang, Sheng, 2022. "Pyrolysis of biomass Tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation," Energy, Elsevier, vol. 244(PB).
    16. Lin, Qunqing & Zhang, Shuping & Wang, Jiaxing & Yin, Haoxin, 2021. "Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar," Renewable Energy, Elsevier, vol. 174(C), pages 188-198.
    17. Ahmad, Waqar & Lin, Leteng & Strand, Michael, 2022. "Benzene conversion using a partial combustion approach in a packed bed reactor," Energy, Elsevier, vol. 239(PC).
    18. Liu, Zhongzhe & Hughes, Matthew & Tong, Yiran & Zhou, Jizhi & Kreutter, William & Valtierra, Danny & Singer, Simcha & Zitomer, Daniel & McNamara, Patrick, 2021. "Enhanced energy and resource recovery via synergistic catalytic pyrolysis of byproducts from thermal processing of wastewater solids," Renewable Energy, Elsevier, vol. 177(C), pages 475-481.
    19. E, Shuang & Jin, Caidi & Liu, Jianglong & Yang, Luhan & Yang, Ming & Xu, Enbo & Wang, Kaiying & Sheng, Kuichuan & Zhang, Ximing, 2022. "Engineering functional hydrochar based catalyst with corn stover and model components for efficient glucose isomerization," Energy, Elsevier, vol. 249(C).
    20. Uyar, Mahmut & Aydın, Hüseyin, 2022. "Production of low sulfur diesel-like fuel from crude oil wastes by pyrolytic distillation and its usage in a diesel engine," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.