IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224021881.html
   My bibliography  Save this article

From sewage sludge and lignocellulose to hydrochar by co-hydrothermal carbonization: Mechanism and combustion characteristics

Author

Listed:
  • Cui, Da
  • Zhang, Bowen
  • Wu, Shuang
  • Xu, Xiangming
  • Liu, Bin
  • Wang, Qing
  • Zhang, Xuehua
  • Zhang, Jinghui

Abstract

This investigation focuses on fabrication of hydrothermal carbon (HTC) using the co-hydrothermal carbonization (Co-HTC) method from the raw materials of sewage sludge (SS) and lignocellulose. The as-prepared hydrochar (HC) was characterized and analyzed by using ultimate analysis, proximate analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR) to investigate its fuel properties, surface morphology, and molecular structure. Particularly, the HC obtained from the Co-HTC process with pine sawdust as raw material exhibited several advantages in terms of carbon content (40.40 %), fixed carbon (FC) content (41.82 %), and high heating value (HHV, 14.87 MJ/kg). Synergistic effects were achieved from the components in the Co-HTC system, leading to increased carbon content, retention of organics, energy yield, HHV, and HC yield. Notably, the Co-HTC treatment of pine sawdust and SS demonstrated the most notable synergistic effect. Thermogravimetric analysis and combustion characteristic index (CCI) values showed that softwood lignin, represented by pine sawdust, exhibited better performance during combustion, with a CCI value of 21.78 (10−7 min−2 °C−3). In short, Co-HTC of hydrochar from lignocellulose and SS can represent a promising approach to resource utilization for obtaining solid fuel.

Suggested Citation

  • Cui, Da & Zhang, Bowen & Wu, Shuang & Xu, Xiangming & Liu, Bin & Wang, Qing & Zhang, Xuehua & Zhang, Jinghui, 2024. "From sewage sludge and lignocellulose to hydrochar by co-hydrothermal carbonization: Mechanism and combustion characteristics," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021881
    DOI: 10.1016/j.energy.2024.132414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.