IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224011587.html
   My bibliography  Save this article

Study on the effects of intake valve timing and lift on the combustion and emission performance of ethanol, N-butanol, and gasoline engine under stoichiometric combustion and lean burn conditions

Author

Listed:
  • Meng, Xianglong
  • Xie, Fangxi
  • Li, Xiaona
  • Han, Linghai
  • Duan, Jiaquan
  • Gong, Yanfeng
  • Zhou, You

Abstract

To achieve carbon neutrality goals, renewable alcohols and new technologies are receiving increased attention. Variable valve technology can effectively improve engine efficiency. However, there is limited research on valve strategies suitable for alcohol. To further promote the efficient and clean application of alcohol, this article studies the effects of intake valve timing and lift on performance of ethanol, n-butanol, and gasoline engines under stoichiometric combustion and lean burn. It is found that the combustion process of ethanol and n-butanol is prolonged by advancing intake valve timing, while gasoline is the opposite. Meanwhile, the improvement of equivalent brake-specific fuel consumption (ESFC) is the most significant when fueled with gasoline, improving by 6.9 %. The improvement of BSNOx is the highest when fueled with ethanol, improving by 42.07 %. Adjusting intake valve lift has a weaker impact on economy than valve timing. However, when adjusting the combination of throttle, valve lift and timing, the ESFC of ethanol, n-butanol, and gasoline can be reduced by 6.79 %, 4.35 %, and 10.98 %. Furthermore, combining valve timing and lean burn can further improve economy and emissions. The ESFC of ethanol, n-butanol, and gasoline can be decreased by 12.73 %, 6.87 %, and 11.96 %, while BSNOx decrease by 93.69 %, 74.86 % and 61.65 %.

Suggested Citation

  • Meng, Xianglong & Xie, Fangxi & Li, Xiaona & Han, Linghai & Duan, Jiaquan & Gong, Yanfeng & Zhou, You, 2024. "Study on the effects of intake valve timing and lift on the combustion and emission performance of ethanol, N-butanol, and gasoline engine under stoichiometric combustion and lean burn conditions," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224011587
    DOI: 10.1016/j.energy.2024.131385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagundez, J.L.S. & Golke, D. & Martins, M.E.S. & Salau, N.P.G., 2019. "An investigation on performance and combustion characteristics of pure n-butanol and a blend of n-butanol/ethanol as fuels in a spark ignition engine," Energy, Elsevier, vol. 176(C), pages 521-530.
    2. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    3. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    5. Feng, Hongqing & Suo, Xinghan & Xiao, Shuwen & Chen, Xiaofan & Zhang, Zhisong & Gao, Ning & Zheng, Zunqing, 2023. "Numerical simulation on the effects of n-butanol combined with intake dilution on engine knock," Energy, Elsevier, vol. 271(C).
    6. Dhamodaran, Gopinath & Esakkimuthu, Ganapathy Sundaram & Pochareddy, Yashwanth Kutti & Sivasubramanian, Harish, 2017. "Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine," Energy, Elsevier, vol. 125(C), pages 726-735.
    7. Luke Oxenham & Yaodong Wang, 2021. "A Study of the Impact of Methanol, Ethanol and the Miller Cycle on a Gasoline Engine," Energies, MDPI, vol. 14(16), pages 1-24, August.
    8. Yu, Xiumin & Guo, Zezhou & Sun, Ping & Wang, Sen & Li, Anshi & Yang, Hang & Li, Zhe & Liu, Ze & Li, Jingyuan & Shang, Zhen, 2019. "Investigation of combustion and emissions of an SI engine with ethanol port injection and gasoline direct injection under lean burn conditions," Energy, Elsevier, vol. 189(C).
    9. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    10. Zhou, Lei & Song, Yuntong & Hua, Jianxiong & Liu, Fengnian & Wei, Haiqiao, 2020. "Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine," Energy, Elsevier, vol. 206(C).
    11. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
    12. Michelangelo Balmelli & Norbert Zsiga & Laura Merotto & Patrik Soltic, 2020. "Effect of the Intake Valve Lift and Closing Angle on Part Load Efficiency of a Spark Ignition Engine," Energies, MDPI, vol. 13(7), pages 1-16, April.
    13. Zhou, Xianjie & Chen, Zheng & Zou, Peng & Liu, Jingping & Duan, Xiongbo & Qin, Tao & Zhang, Shiheng & Shen, Dazi, 2020. "Combustion and energy balance analysis of an unthrottled gasoline engine equipped with innovative variable valvetrain," Applied Energy, Elsevier, vol. 268(C).
    14. Yadav, Jaykumar & Ramesh, A., 2018. "Injection strategies for reducing smoke and improving the performance of a butanol-diesel common rail dual fuel engine," Applied Energy, Elsevier, vol. 212(C), pages 1-12.
    15. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    16. Mendez, C.J. & Parthasarathy, R.N. & Gollahalli, S.R., 2014. "Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine," Applied Energy, Elsevier, vol. 118(C), pages 135-140.
    17. Thangavel, Venugopal & Momula, Sai Yashwanth & Gosala, Dheeraj Bharadwaj & Asvathanarayanan, Ramesh, 2016. "Experimental studies on simultaneous injection of ethanol–gasoline and n-butanol–gasoline in the intake port of a four stroke SI engine," Renewable Energy, Elsevier, vol. 91(C), pages 347-360.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & He, Guanzhang & Huang, Haozhong & Guo, Xiaoyu & Xing, Kongzhao & Liu, Songtao & Tu, Zhanfei & Xia, Qi, 2023. "Thermodynamic and exergy analysis of high compression ratio coupled with late intake valve closing to improve thermal efficiency of two-stage turbocharged diesel engines," Energy, Elsevier, vol. 268(C).
    2. Tian, Zhi & Zhen, Xudong & Wang, Yang & Liu, Daming & Li, Xiaoyan, 2020. "Combustion and emission characteristics of n-butanol-gasoline blends in SI direct injection gasoline engine," Renewable Energy, Elsevier, vol. 146(C), pages 267-279.
    3. Liu, Shang & Lin, Zhelong & Zhang, Hao & Fan, Qinhao & Lei, Nuo & Wang, Zhi, 2023. "Experimental study on combustion and emission characteristics of ethanol-gasoline blends in a high compression ratio SI engine," Energy, Elsevier, vol. 274(C).
    4. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    5. Catapano, Francesco & Di Iorio, Silvana & Magno, Agnese & Vaglieco, Bianca Maria, 2022. "Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10–23 nm particles," Energy, Elsevier, vol. 239(PB).
    6. Qiao, Junhao & Liu, Jingping & Liang, Jichao & Jia, Dongdong & Wang, Rumin & Shen, Dazi & Duan, Xiongbo, 2023. "Experimental investigation the effects of Miller cycle coupled with asynchronous intake valves on cycle-to-cycle variations and performance of the SI engine," Energy, Elsevier, vol. 263(PD).
    7. Fridrichová, K. & Drápal, L. & Vopařil, J. & Dlugoš, J., 2021. "Overview of the potential and limitations of cylinder deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Sathish Kumar, T. & Ashok, B. & Saravanan, B., 2023. "Calibration of flex-fuel operating parameters using grey relational analysis to enhance the output characteristics of ethanol powered direct injection SI engine," Energy, Elsevier, vol. 281(C).
    10. Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.
    11. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    12. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    13. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    14. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    15. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    16. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    17. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    18. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    19. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    20. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224011587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.