IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223003122.html
   My bibliography  Save this article

Numerical simulation on the effects of n-butanol combined with intake dilution on engine knock

Author

Listed:
  • Feng, Hongqing
  • Suo, Xinghan
  • Xiao, Shuwen
  • Chen, Xiaofan
  • Zhang, Zhisong
  • Gao, Ning
  • Zheng, Zunqing

Abstract

The improvement in thermal efficiency of GDI engine is severely limited by knocking. The effects of n-butanol combined with intake dilution on engine knock and thermal efficiency were studied in this paper. The results show that the combustion activity of n-butanol containing OH functional group can be improved by blending a small amount, and then the detonation intensity and thermal efficiency can be improved. When a high proportion of n-butanol is mixed, the knock strength and thermal efficiency will be reduced due to the effect of low calorific value and latent heat of vaporization. In particular, the maximum value is reached when 15% n-butanol is employed. The spontaneous combustion tendency is reduced by intake dilution, and the influence degree is reduced in the order of EGR dilution, compound dilution and air dilution, which is caused by the different amount of CO2 in the three dilution gases. When RA = 1.2 and RA-E = 1.2, the knock intensity of GDI engine burning Bu15 is reduced by 96.3% and 98.4%, respectively. Therefore, when n-butanol combined with composite dilution is selected, the occurrence of knocking can be suppressed, while ensuring high thermal efficiency. Current study can provide theoretical guidance for knock suppression of GDI engines.

Suggested Citation

  • Feng, Hongqing & Suo, Xinghan & Xiao, Shuwen & Chen, Xiaofan & Zhang, Zhisong & Gao, Ning & Zheng, Zunqing, 2023. "Numerical simulation on the effects of n-butanol combined with intake dilution on engine knock," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003122
    DOI: 10.1016/j.energy.2023.126918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tornatore, Cinzia & Marchitto, Luca & Valentino, Gerardo & Esposito Corcione, Felice & Merola, Simona Silvia, 2012. "Optical diagnostics of the combustion process in a PFI SI boosted engine fueled with butanol–gasoline blend," Energy, Elsevier, vol. 45(1), pages 277-287.
    2. Kim, Tae Young & Park, Cheolwoong & Oh, Seungmook & Cho, Gyuback, 2016. "The effects of stratified lean combustion and exhaust gas recirculation on combustion and emission characteristics of an LPG direct injection engine," Energy, Elsevier, vol. 115(P1), pages 386-396.
    3. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    4. Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Shao, Aifang & Pan, Mingzhang, 2017. "Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate," Energy, Elsevier, vol. 118(C), pages 190-196.
    5. Lee, Sunyoup & Park, Seunghyun & Kim, Changgi & Kim, Young-Min & Kim, Yongrae & Park, Cheolwoong, 2014. "Comparative study on EGR and lean burn strategies employed in an SI engine fueled by low calorific gas," Applied Energy, Elsevier, vol. 129(C), pages 10-16.
    6. Chen, Lin & Wei, Haiqiao & Chen, Ceyuan & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2019. "Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine," Energy, Elsevier, vol. 166(C), pages 318-325.
    7. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    8. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novella, R. & Gomez-Soriano, J. & Barbery, I. & Martinez-Hernandiz, P.J., 2024. "Exploring the passive the pre-chamber ignition concept for spark-ignition engines fueled with natural gas under EGR-diluted conditions," Energy, Elsevier, vol. 294(C).
    2. Meng, Xianglong & Xie, Fangxi & Li, Xiaona & Han, Linghai & Duan, Jiaquan & Gong, Yanfeng & Zhou, You, 2024. "Study on the effects of intake valve timing and lift on the combustion and emission performance of ethanol, N-butanol, and gasoline engine under stoichiometric combustion and lean burn conditions," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheolwoong Park & Taeyoung Kim & Gyubaek Cho & Janghee Lee, 2016. "Combustion and Emission Characteristics According to the Fuel Injection Ratio of an Ultra-Lean LPG Direct Injection Engine," Energies, MDPI, vol. 9(11), pages 1-12, November.
    2. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    3. Wang, Yongjian & Long, Wuqiang & Dong, Pengbo & Tian, Hua & Wang, Yang & Xie, Chunyang & Tang, Yuanyou & Lu, Mingfei & Zhang, Weiqi, 2024. "Experimental investigation of knock control criterion considering power output loss for a PFI SI methanol marine engine," Energy, Elsevier, vol. 303(C).
    4. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    5. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    6. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).
    7. Khoa, Nguyen Xuan & Quach Nhu, Y. & Lim, Ocktaeck, 2020. "Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine," Applied Energy, Elsevier, vol. 278(C).
    8. Gong, Changming & Zhang, Zilei & Sun, Jingzhen & Chen, Yulin & Liu, Fenghua, 2020. "Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition," Energy, Elsevier, vol. 205(C).
    9. Yu, Xiumin & Wang, Tianqi & Guo, Zezhou & Zhao, Zhe & Li, Decheng & Li, Yinan & Gong, Tianyang, 2024. "Effect of exhaust gas recirculation(EGR) on combustion and emission of butanol/gasoline combined injection engine," Energy, Elsevier, vol. 295(C).
    10. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    11. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    12. Han, S.-H. & Cho, D.H. & Kim, Y.H. & Shin, S.-J., 2013. "Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation," Energy, Elsevier, vol. 61(C), pages 13-17.
    13. Lijia Zhong & Changwen Liu, 2019. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation," Energies, MDPI, vol. 12(20), pages 1-20, October.
    14. Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
    15. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    16. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    17. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    18. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    19. Xiao, Gang & Jia, Ming & Wang, Tianyou, 2016. "Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model," Energy, Elsevier, vol. 97(C), pages 20-35.
    20. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Karimkashi, S. & Vuorinen, V., 2019. "Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds," Applied Energy, Elsevier, vol. 250(C), pages 801-820.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.