IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp649-662.html
   My bibliography  Save this article

Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control

Author

Listed:
  • Osorio, Julian D.
  • Rivera-Alvarez, Alejandro

Abstract

In this work, a Continuous Variable Valve Timing (CVVT) system for load control in spark-ignition engines is proposed, analyzed, and compared with a conventional Throttle-controlled Engine. An analytical model for ideal processes is initially developed to study the performance of both cycles during part-load operation. Then, irreversibilites comprising charging dilution effects and heat losses during compression and expansion strokes are considered to approach a more realistic engine operation. At full-load, both cycles reach a maximum efficiency corresponding to that of an Otto cycle. However, a reduction in the efficiency occurs at part-load operation, with the CVVT Engine having a higher efficiency with respect to the Throttled Engine due to its unthrottled load control mechanism, which avoids power consumption caused by friction during air intake. It is found that charge dilution exerts a strong impact in the net power output and efficiency of both cycles. Additional reductions in power output and efficiency are caused by heat losses. At part-load operation, lower temperatures and pressures are reached in the CVVT Engine, which imply lower mechanical stresses that favor engine lifetime. It also represents a potential for additional efficiency enhancement via increasing combustion temperature. Finally, a fuel economy estimation analysis is carried out to provide quantitative assessment about the economic advantage of the proposed CVVT Engine. From this analysis, a fuel economy increment of up to 4.1% is obtained for a CVVT Engine with respect to a Throttled Engine at a 20%–30% load, which is typical of a real vehicle engine operation.

Suggested Citation

  • Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:649-662
    DOI: 10.1016/j.energy.2018.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    2. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.
    3. Fontana, G. & Galloni, E., 2009. "Variable valve timing for fuel economy improvement in a small spark-ignition engine," Applied Energy, Elsevier, vol. 86(1), pages 96-105, January.
    4. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    5. Dobrucali, Erinc, 2016. "The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine," Energy, Elsevier, vol. 103(C), pages 119-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Donghwan & Son, Yousang & Park, Sungwook, 2022. "Effects of operating parameters on in-cylinder flow characteristics of an optically accessible engine with a spray-guided injector," Energy, Elsevier, vol. 245(C).
    2. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    3. Meng, Xianglong & Xie, Fangxi & Li, Xiaona & Han, Linghai & Duan, Jiaquan & Gong, Yanfeng & Zhou, You, 2024. "Study on the effects of intake valve timing and lift on the combustion and emission performance of ethanol, N-butanol, and gasoline engine under stoichiometric combustion and lean burn conditions," Energy, Elsevier, vol. 300(C).
    4. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
    5. Tripathy, Srinibas & Das, Abhimanyu & Srivastava, Dhananjay Kumar, 2020. "Electro-pneumatic variable valve actuation system for camless engine: Part II-fuel consumption improvement through un-throttled operation," Energy, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    2. Zambalov, Sergey & Kasaev, Dmitry & Yakovlev, Igor & Ji, Changwei & Yang, Jinxin & Maznoy, Anatoly, 2024. "Effect of over-expansion in a cycloidal rotary engine," Energy, Elsevier, vol. 302(C).
    3. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    4. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    5. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    6. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    7. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    8. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    9. Wu, Jingtao & Zhang, Zhehao & Kang, Zhe & Deng, Jun & Li, Liguang & Wu, Zhijun, 2022. "An assessment methodology for fuel/water consumption co-optimization of a gasoline engine with port water injection," Applied Energy, Elsevier, vol. 310(C).
    10. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    13. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    14. Ashish J Chaudhari & Santosh K Hotta & Niranjan Sahoo & Vinayak Kulkarni, 2019. "Effect of vertical location of the spark plug on the performance of a raw biogas-fueled variable compression ratio spark ignition engine," Energy & Environment, , vol. 30(7), pages 1313-1338, November.
    15. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    17. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    18. Ramasamy, D. & Zainal, Z.A. & Kadirgama, K. & Walker-Gitano Briggs, Horizon, 2016. "Effect of dissimilar valve lift on a bi-fuel CNG engine operation," Energy, Elsevier, vol. 112(C), pages 509-519.
    19. Pedrozo, Vinícius B. & Zhao, Hua, 2018. "Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling," Applied Energy, Elsevier, vol. 210(C), pages 138-151.
    20. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:649-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.