IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006054.html
   My bibliography  Save this article

Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions

Author

Listed:
  • Zhang, Junqing
  • Chen, Danan
  • Lai, Shini
  • Li, Jun
  • Huang, Hongyu
  • Kobayashi, Noriyuki

Abstract

Ammonia is regarded as a promising alternative fuel in internal combustion engine for its potential to reduce carbon emissions. Injection process of liquid ammonia will affect air-fuel mixture distribution and therefore combustion efficiency and NOx emissions. However, the experimental studies of liquid ammonia injection under engine conditions are limited, and the key impact factors of spray evolution are still unclear. This study aims to evaluate the applicability of numerical models for liquid ammonia spray, and numerically investigate spray characteristics under diesel-engine conditions (ambient temperature > 800K, ambient pressure > 2 MPa). Large eddy simulation coupled with Lagrangian particle tracking method were conducted, and the results show that the non equilibrium - Frössling phase change model coupled with Schiller-Naumann drag model can provide a good prediction of spray penetration. Liquid penetration increases with ambient pressure decreasing; vapor penetration increases with ambient density decreasing, but insensitive to ambient temperature. Temperature - mixture fraction distribution is sensitive to ambient temperature and superheat degree. Besides, a three-stage 0D model of spray tip penetration under diesel-engine conditions is developed firstly, which can reflect the key impact factors of ammonia spray evolution and provide theoretical support to optimize fuel injection strategy of liquid ammonia-fueled engines.

Suggested Citation

  • Zhang, Junqing & Chen, Danan & Lai, Shini & Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki, 2024. "Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006054
    DOI: 10.1016/j.energy.2024.130833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    2. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    3. Zhou, Xinyi & Li, Tie & Wang, Ning & Wang, Xinran & Chen, Run & Li, Shiyan, 2023. "Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    5. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    6. Yuwen Fang & Xiao Ma & Yixiao Zhang & Yanfei Li & Kaiqi Zhang & Changzhao Jiang & Zhi Wang & Shijin Shuai, 2023. "Experimental Investigation of High-Pressure Liquid Ammonia Injection under Non-Flash Boiling and Flash Boiling Conditions," Energies, MDPI, vol. 16(6), pages 1-21, March.
    7. Lin, Jhe-Kai & Nurazaq, Warit Abi & Wang, Wei-Cheng, 2023. "The properties of sustainable aviation fuel I: Spray characteristics," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    2. Zha, Xiaojian & Zhang, Zewu & Zhao, Zhenghong & Yang, Long & Mao, Wenchao & Wu, Fan & Li, Xiaoshan & Luo, Cong & Zhang, Liqi, 2024. "Comparative study on co-firing characteristics of normal and superfine pulverized coal blended with NH3 under the MILD combustion mode," Energy, Elsevier, vol. 305(C).
    3. Zhang, Xiaolei & Tian, Jiangping & Cui, Zechuan & Yin, Shuo & Ye, Mingyuan & Yang, Hongen & Zhou, Qingxing & Shi, Song & Wei, Kaile, 2024. "Visualization study on the flame propagation and distribution characteristics and exploration of optimal injection strategy in ammonia/diesel dual direct injection mode," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Pengbo & Liu, Kunlong & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Tian, Hua, 2024. "Study on the synergistic control of nitrogenous emissions and greenhouse gas of ammonia/diesel dual direct injection two-stroke engine," Energy, Elsevier, vol. 307(C).
    2. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    3. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    4. Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
    5. Tang, Qianyong & Li, Huajiao & Qi, Yajie & Li, Yang & Liu, Haiping & Wang, Xingxing, 2023. "The reliability of the trade dependence network in the tungsten industry chain based on percolation," Resources Policy, Elsevier, vol. 82(C).
    6. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    7. Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
    8. Sheng Zhang & Yifu Yang & Chengdi Ding & Zhongquan Miao, 2023. "The Impact of International Relations Patterns on China’s Energy Security Supply, Demand, and Sustainable Development: An Exploration of Oil Demand and Sustainability Goals," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    9. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    10. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    11. Wang, Shunli & Wu, Fan & Takyi-Aninakwa, Paul & Fernandez, Carlos & Stroe, Daniel-Ioan & Huang, Qi, 2023. "Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-curren," Energy, Elsevier, vol. 284(C).
    12. Joanna Jójka & Rafał Ślefarski, 2021. "Emission Characteristics for Swirl Methane–Air Premixed Flames with Ammonia Addition," Energies, MDPI, vol. 14(3), pages 1-19, January.
    13. Yalong Li & Baofeng Zhao & Haibin Guan & Suxiang Liu & Di Zhu & Angang Song & Huan Li & Laizhi Sun, 2023. "Hydrogen Production from Catalytic Pyrolysis of Phenol as Tar Model Compound in Magnetic Field," Energies, MDPI, vol. 16(10), pages 1-14, May.
    14. Guo, Yaoqi & Zhao, Boya & Zhang, Hongwei, 2023. "The impact of the Belt and Road Initiative on the natural gas trade: A network structure dependence perspective," Energy, Elsevier, vol. 263(PD).
    15. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    16. Ding, Yueting & Chen, Sai & Zheng, Yilei & Chai, Shanglei & Nie, Rui, 2022. "Resilience assessment of China's natural gas system under supply shortages: A system dynamics approach," Energy, Elsevier, vol. 247(C).
    17. Yan, Jingjing & Guo, Yaoqi & Zhang, Hongwei, 2024. "The dynamic evolution mechanism of structural dependence characteristics in the global oil trade network," Energy, Elsevier, vol. 303(C).
    18. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    19. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    20. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.