IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224015317.html
   My bibliography  Save this article

Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions

Author

Listed:
  • Li, Shiyan
  • Wang, Ning
  • Li, Tie
  • Chen, Run
  • Yi, Ping
  • Huang, Shuai
  • Zhou, Xinyi

Abstract

The utilization of ammonia fuel in internal combustion engines holds significant promise in achieving carbon neutrality objectives. High-pressure direct injection technology offers precise control over fuel quantity and mixture formation. However, it is crucial to control the impingement of the liquid phase to minimize emissions, especially in the case of ammonia. In this study, we employ the diffused back illumination imaging technique to investigate the dynamic evolution characteristics of the liquid phase in evaporating ammonia sprays, via a comparison with diesel fuel. Parameters, including injection pressure, fuel temperature, nozzle diameter, ambient pressure, and ambient temperature are examined and assessed under engine-like conditions. Our findings highlight the distinct dynamic evolution behavior of diesel spray, which is characterized by periodic detachments of large droplet clusters and cyclic variations in liquid penetration. This contrasts with the smoother evolution of ammonia spray. Notably, during the quasi-steady state, the liquid penetration in ammonia spray exhibits a significant increasing trend due to the large latent heat of evaporation. Finally, a predictive 1D model is proposed with consideration of multiple influencing factors. The findings offer valuable insights into comprehending and modeling the evaporating ammonia spray, thereby contributing to enhanced efficiency and cleaner combustion processes within ammonia engines.

Suggested Citation

  • Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224015317
    DOI: 10.1016/j.energy.2024.131758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Junqing & Chen, Danan & Lai, Shini & Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki, 2024. "Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions," Energy, Elsevier, vol. 294(C).
    2. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    3. Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
    4. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    5. Xinyi Zhou & Tie Li & Run Chen & Yijie Wei & Xinran Wang & Ning Wang & Shiyan Li & Min Kuang & Wenming Yang, 2024. "Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaolei & Tian, Jiangping & Cui, Zechuan & Yin, Shuo & Ye, Mingyuan & Yang, Hongen & Zhou, Qingxing & Shi, Song & Wei, Kaile, 2024. "Visualization study on the flame propagation and distribution characteristics and exploration of optimal injection strategy in ammonia/diesel dual direct injection mode," Energy, Elsevier, vol. 307(C).
    2. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    3. Dong, Pengbo & Liu, Kunlong & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Tian, Hua, 2024. "Study on the synergistic control of nitrogenous emissions and greenhouse gas of ammonia/diesel dual direct injection two-stroke engine," Energy, Elsevier, vol. 307(C).
    4. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    5. Zha, Xiaojian & Zhang, Zewu & Zhao, Zhenghong & Yang, Long & Mao, Wenchao & Wu, Fan & Li, Xiaoshan & Luo, Cong & Zhang, Liqi, 2024. "Comparative study on co-firing characteristics of normal and superfine pulverized coal blended with NH3 under the MILD combustion mode," Energy, Elsevier, vol. 305(C).
    6. Zhanbin Gao & Yang Xiao & Jin Mao & Liang Zhou & Xinju Li & Zhiyong Li, 2024. "Optimization of Second-Generation Biodiesel Blends to Enhance Diesel Engine Performance and Reduce Pollutant Emissions," Energies, MDPI, vol. 17(23), pages 1-19, November.
    7. Guo, Xinpeng & Li, Tie & Chen, Run & Huang, Shuai & Zhou, Xinyi & Wang, Ning & Li, Shiyan, 2024. "Effects of the nozzle design parameters on turbulent jet development of active pre-chamber," Energy, Elsevier, vol. 306(C).
    8. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    9. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    10. Yin, Bingqian & Lu, Zhen & Shi, Lei & Lu, Tianlong & Ye, Jianpeng & Ma, Junqing & Wang, Tianyou, 2024. "Numerical simulation of a spark ignition ammonia marine engine for future ship power applications," Energy, Elsevier, vol. 302(C).
    11. Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224015317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.