IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030433.html
   My bibliography  Save this article

Similarity of high-pressure direct-injection liquid ammonia spray for different-sized engines

Author

Listed:
  • Zhou, Xinyi
  • Li, Tie
  • Wang, Ning
  • Wu, Zehao
  • Cao, Jiale
  • Chen, Run
  • Huang, Shuai
  • Li, Shiyan

Abstract

Carbon-free ammonia has been regarded as a promising alternative fuel for the shipping industry, and the high-pressure direct-injection (HPDI) liquid ammonia spray combustion mode has attracted significant attention in recent years. Scaled model experiment based on similarity theory has a significant role in the intensive development of a series of engines with different bore sizes, but there is no information available on scaled model experiments of ammonia engine. To facilitate the intensive development of ammonia engines with different bore sizes and meet the urgent GHG reduction targets, the present study conducts a pioneering theoretical and numerical study on scaled model experiments for ammonia engine, primarily focusing on the HPDI mode and the similarity of liquid ammonia spray from different-sized nozzle holes. In the theoretical section, the single value conditions and two similarity laws for scaling liquid ammonia spray are summarized, and the similarity of fuel injection rate, spray breakup, spray tip penetration evolution and maximum liquid length is theoretically analyzed. Then, an optical combustion chamber coupled with high-speed photography techniques are used to obtain liquid ammonia spray data across various engine-like conditions. After validating the 3D-CFD simulations against the experiment data, the similarity of liquid ammonia spray is numerically analyzed under different similarity ratios and ambient conditions. Generally, the spray vapor- and liquid-phase penetration as well as spray morphology and ammonia mass fraction distributions can be well scaled under the non-flashing region, indicating the effectiveness of the single value conditions and similarity laws. Moreover, the speed law leads to a slightly longer maximum liquid length, while the pressure law exhibits great prediction. This aligns with the theoretical analysis that the evaporation process of liquid ammonia spray is controlled by fuel and air mixing process, suggesting that the local interphase transport at the droplet surface is not the rate-controlling factor.

Suggested Citation

  • Zhou, Xinyi & Li, Tie & Wang, Ning & Wu, Zehao & Cao, Jiale & Chen, Run & Huang, Shuai & Li, Shiyan, 2024. "Similarity of high-pressure direct-injection liquid ammonia spray for different-sized engines," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030433
    DOI: 10.1016/j.energy.2024.133267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masataka Arai, 2022. "Interpretative Review of Diesel Spray Penetration Normalized by Length and Time of Breakup (Similarity Law of Diesel Spray and Its Application)," Energies, MDPI, vol. 15(13), pages 1-36, July.
    2. Zhang, Junqing & Chen, Danan & Lai, Shini & Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki, 2024. "Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions," Energy, Elsevier, vol. 294(C).
    3. Xinyi Zhou & Tie Li & Run Chen & Yijie Wei & Xinran Wang & Ning Wang & Shiyan Li & Min Kuang & Wenming Yang, 2024. "Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    5. Zhou, Xinyi & Li, Tie & Wang, Ning & Wang, Xinran & Chen, Run & Li, Shiyan, 2023. "Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    7. Yuwen Fang & Xiao Ma & Yixiao Zhang & Yanfei Li & Kaiqi Zhang & Changzhao Jiang & Zhi Wang & Shijin Shuai, 2023. "Experimental Investigation of High-Pressure Liquid Ammonia Injection under Non-Flash Boiling and Flash Boiling Conditions," Energies, MDPI, vol. 16(6), pages 1-21, March.
    8. Zhai, Chang & Liu, Erwei & Zhang, Gengxin & Xing, Wenjing & Chang, Feixiang & Jin, Yu & Luo, Hongliang & Nishida, Keiya & Ogata, Yoichi, 2024. "Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics," Energy, Elsevier, vol. 288(C).
    9. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    10. Zhou, Xinyi & Li, Tie & Yi, Ping, 2021. "The similarity ratio effects in design of scaled model experiments for marine diesel engines," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    2. Dong, Pengbo & Liu, Kunlong & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Tian, Hua, 2024. "Study on the synergistic control of nitrogenous emissions and greenhouse gas of ammonia/diesel dual direct injection two-stroke engine," Energy, Elsevier, vol. 307(C).
    3. Zhang, Junqing & Chen, Danan & Lai, Shini & Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki, 2024. "Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions," Energy, Elsevier, vol. 294(C).
    4. Zhang, Xiaolei & Tian, Jiangping & Cui, Zechuan & Yin, Shuo & Ye, Mingyuan & Yang, Hongen & Zhou, Qingxing & Shi, Song & Wei, Kaile, 2024. "Visualization study on the flame propagation and distribution characteristics and exploration of optimal injection strategy in ammonia/diesel dual direct injection mode," Energy, Elsevier, vol. 307(C).
    5. Xinyi Zhou & Tie Li & Run Chen & Yijie Wei & Xinran Wang & Ning Wang & Shiyan Li & Min Kuang & Wenming Yang, 2024. "Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    7. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    8. Yin, Bingqian & Lu, Zhen & Shi, Lei & Lu, Tianlong & Ye, Jianpeng & Ma, Junqing & Wang, Tianyou, 2024. "Numerical simulation of a spark ignition ammonia marine engine for future ship power applications," Energy, Elsevier, vol. 302(C).
    9. Dong, Pengbo & Chen, Shihao & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Wang, Qingyang & Chen, Weize, 2024. "Ammonia diffusion combustion and emission formation characteristics in a single cylinder two stroke engine," Energy, Elsevier, vol. 311(C).
    10. Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
    11. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    12. Zha, Xiaojian & Zhang, Zewu & Zhao, Zhenghong & Yang, Long & Mao, Wenchao & Wu, Fan & Li, Xiaoshan & Luo, Cong & Zhang, Liqi, 2024. "Comparative study on co-firing characteristics of normal and superfine pulverized coal blended with NH3 under the MILD combustion mode," Energy, Elsevier, vol. 305(C).
    13. Guo, Xinpeng & Li, Tie & Chen, Run & Huang, Shuai & Zhou, Xinyi & Wang, Ning & Li, Shiyan, 2024. "Effects of the nozzle design parameters on turbulent jet development of active pre-chamber," Energy, Elsevier, vol. 306(C).
    14. Chen, Zhanming & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua & Zhao, Pengyun & Wang, Tao & Zhang, Haitao & Chen, Hao, 2024. "An experimental study the cross spray and combustion characteristics diesel and ammonia in a constant volume combustion chamber," Energy, Elsevier, vol. 293(C).
    15. Zhou, Xinyi & Li, Tie & Wang, Ning & Wang, Xinran & Chen, Run & Li, Shiyan, 2023. "Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    17. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    18. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).
    20. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.