IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp1052-1063.html
   My bibliography  Save this article

Iterative 3D layout optimization and parametric trade study for a reconfigurable ocean current turbine array using Bayesian Optimization

Author

Listed:
  • Baheri, Ali
  • Ramaprabhu, Praveen
  • Vermillion, Christopher

Abstract

In this paper, we present an online approach for optimizing the 3D layout of a reconfigurable ocean current turbine (OCT) array. Unlike towered turbines, most OCT concepts for Gulf Stream energy harvesting involve tethered systems. The replacement of towers with tethers provides the opportunity for OCTs to adjust their locations within some domain by paying out/in tether to adjust depth and manipulating control surfaces (elevators and rudders) to adjust longitudinal and lateral positions. The ability to adjust the OCT positions online provides the capacity to reconfigure the array layout in response to changing flow conditions; however, successful online array layout reconfiguration requires optimization schemes that are not only effective but also enable fast convergence to the optimal configuration. To address the above needs, we present a reconfigurable layout optimization algorithm with two novel features. First, we describe the location of each turbine through a small set of basis parameters; the number of basis parameters does not grow with increasing array size, thereby leading to an optimization that is not only computationally tractable but is also highly scalable. Secondly, we use Bayesian Optimization to optimize these basis parameters. Bayesian Optimization is a very powerful iterative optimization technique that, at every iteration, fuses a best-guess model of a complex function (array power as a function of basis parameters, in our case) with a characterization of the model uncertainty in order to determine the next evaluation point. Using a low-order analytical wake interaction model, we demonstrate the effectiveness of the proposed optimization approach for various array sizes.

Suggested Citation

  • Baheri, Ali & Ramaprabhu, Praveen & Vermillion, Christopher, 2018. "Iterative 3D layout optimization and parametric trade study for a reconfigurable ocean current turbine array using Bayesian Optimization," Renewable Energy, Elsevier, vol. 127(C), pages 1052-1063.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:1052-1063
    DOI: 10.1016/j.renene.2018.05.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    2. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    3. Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
    2. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    2. Lo Brutto, Ottavio A. & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2017. "Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization," Applied Energy, Elsevier, vol. 204(C), pages 653-666.
    3. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    4. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    5. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    6. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    7. Pérez, Beatriz & Mínguez, Roberto & Guanche, Raúl, 2013. "Offshore wind farm layout optimization using mathematical programming techniques," Renewable Energy, Elsevier, vol. 53(C), pages 389-399.
    8. Wang, Longyan & Tan, Andy & Gu, Yuantong, 2016. "A novel control strategy approach to optimally design a wind farm layout," Renewable Energy, Elsevier, vol. 95(C), pages 10-21.
    9. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    10. Song, Zhe & Zhang, Zijun & Chen, Xingying, 2016. "The decision model of 3-dimensional wind farm layout design," Renewable Energy, Elsevier, vol. 85(C), pages 248-258.
    11. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    12. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
    13. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
    14. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    15. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    16. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
    17. Wilson, Dennis & Rodrigues, Silvio & Segura, Carlos & Loshchilov, Ilya & Hutter, Frank & Buenfil, Guillermo López & Kheiri, Ahmed & Keedwell, Ed & Ocampo-Pineda, Mario & Özcan, Ender & Peña, Sergio Iv, 2018. "Evolutionary computation for wind farm layout optimization," Renewable Energy, Elsevier, vol. 126(C), pages 681-691.
    18. Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
    19. Yamani Douzi Sorkhabi, Sami & Romero, David A. & Yan, Gary Kai & Gu, Michelle Dao & Moran, Joaquin & Morgenroth, Michael & Amon, Cristina H., 2016. "The impact of land use constraints in multi-objective energy-noise wind farm layout optimization," Renewable Energy, Elsevier, vol. 85(C), pages 359-370.
    20. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:1052-1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.