IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027888.html
   My bibliography  Save this article

Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions

Author

Listed:
  • Kellil, N.
  • Aissat, A.
  • Mellit, A.

Abstract

The number of decentralized photovoltaic (PV) systems generating electricity has increased significantly, and its monitoring and maintenance has become a challenge in terms of stability, reliability, security, efficiency, as well as energy production costs. Hence, prevention against faults and breakdowns becomes essential. In this work, a Convolutional Neural Network (CNN) model and a fine-tuned model based on Visual Geometry Group (VGG-16) have been examined to address the issue of fault diagnosis of PV modules using thermographic images. For fault detection, we have used binary classification, and multiclass classification for identification the type of fault. The database used in this study was made up of an imbalanced class distribution of infrared thermographic images of PV modules under normal and faulty conditions (such as bypass diode failure, partially covered PV module, shading effect, short-circuit and dust deposit on the PV surface). The test facility is located at the Unit for Developing Solar Equipment's (UDES), in the north of Algeria. The average accuracy archived using the fine-tuned VGG-16 model is 99.91% for the fault detection and 99.80% for the fault diagnosis of five types of defects. Experimental tests show high accurate prediction results using the fine-tuned model and somewhat less accuracy using the small Deep Convolutional Neural Network (small-DCNN) model.

Suggested Citation

  • Kellil, N. & Aissat, A. & Mellit, A., 2023. "Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027888
    DOI: 10.1016/j.energy.2022.125902
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapucu, Ceyhun & Cubukcu, Mete, 2021. "A supervised ensemble learning method for fault diagnosis in photovoltaic strings," Energy, Elsevier, vol. 227(C).
    2. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    3. Li, Zheng & Luan, Ranran & Lin, Boqiang, 2022. "The trend and factors affecting renewable energy distribution and disparity across countries," Energy, Elsevier, vol. 254(PB).
    4. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    5. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Alonso-García, María del Carmen & Santos, José Domingo & Morales-Aragonés, José Ignacio & Alonso-Gómez, Víctor & Moretón-Fernández, Ángel & González, 2020. "Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison," Energy, Elsevier, vol. 205(C).
    6. Wang, Haizheng & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2019. "Probability modeling for PV array output interval and its application in fault diagnosis," Energy, Elsevier, vol. 189(C).
    7. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    9. Lindahl, Johan & Lingfors, David & Elmqvist, Åsa & Mignon, Ingrid, 2022. "Economic analysis of the early market of centralized photovoltaic parks in Sweden," Renewable Energy, Elsevier, vol. 185(C), pages 1192-1208.
    10. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    11. Di Tommaso, Antonio & Betti, Alessandro & Fontanelli, Giacomo & Michelozzi, Benedetto, 2022. "A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 193(C), pages 941-962.
    12. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Benghanem & Adel Mellit & Chourouk Moussaoui, 2023. "Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    2. Jianmin Zhou & Lulu Liu & Xiwen Shen, 2023. "SSDStacked-BLS with Extended Depth and Width: Infrared Fault Diagnosis of Rolling Bearings under Dual Feature Selection," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    3. Naveen Venkatesh Sridharan & Jerome Vasanth Joseph & Sugumaran Vaithiyanathan & Mohammadreza Aghaei, 2023. "Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules," Energies, MDPI, vol. 16(15), pages 1-17, August.
    4. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naveen Venkatesh Sridharan & Jerome Vasanth Joseph & Sugumaran Vaithiyanathan & Mohammadreza Aghaei, 2023. "Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules," Energies, MDPI, vol. 16(15), pages 1-17, August.
    2. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    3. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    4. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    5. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    6. Adel Mellit & Chadia Zayane & Sahbi Boubaker & Souad Kamel, 2023. "A Sustainable Fault Diagnosis Approach for Photovoltaic Systems Based on Stacking-Based Ensemble Learning Methods," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    7. Mellit, A. & Benghanem, M. & Kalogirou, S. & Massi Pavan, A., 2023. "An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine learning and the internet of things," Renewable Energy, Elsevier, vol. 208(C), pages 399-408.
    8. Guillermo Almonacid-Olleros & Gabino Almonacid & David Gil & Javier Medina-Quero, 2022. "Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    9. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    11. Mohamed Benghanem & Adel Mellit & Chourouk Moussaoui, 2023. "Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    12. Adel Mellit & Omar Herrak & Catalina Rus Casas & Alessandro Massi Pavan, 2021. "A Machine Learning and Internet of Things-Based Online Fault Diagnosis Method for Photovoltaic Arrays," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    13. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    14. Zhao, Xiaolong & Song, Chonghui & Zhang, Haifeng & Sun, Xianrui & Zhao, Jing, 2023. "HRNet-based automatic identification of photovoltaic module defects using electroluminescence images," Energy, Elsevier, vol. 267(C).
    15. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Tarek Berghout & Mohamed Benbouzid & Toufik Bentrcia & Xiandong Ma & Siniša Djurović & Leïla-Hayet Mouss, 2021. "Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects," Energies, MDPI, vol. 14(19), pages 1-24, October.
    17. Lin, Wenye & Ma, Zhenjun & Li, Kehua & Tyagi, V.V. & Pandey, A.K., 2021. "A dynamic simulation platform for fault modelling and characterisation of building integrated photovoltaics," Renewable Energy, Elsevier, vol. 179(C), pages 963-981.
    18. Buratti, Yoann & Javier, Gaia M.N. & Abdullah-Vetter, Zubair & Dwivedi, Priya & Hameiri, Ziv, 2024. "Machine learning for advanced characterisation of silicon photovoltaics: A comprehensive review of techniques and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    19. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    20. Pal, Ankit & Ilango, G. Saravana, 2024. "Design and techno-economic analysis of an off-grid integrated PV-biogas system with a constant temperature digester for a cost-effective rural application," Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.