IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i4d10.1007_s11269-023-03450-y.html
   My bibliography  Save this article

Modelling and Analyzing a Unique Phenomenon of Surface Water Temperature Rise in a Tropical, Large, Riverine Reservoir

Author

Listed:
  • Shibo Guo

    (Tsinghua University)

  • Dejun Zhu

    (Tsinghua University)

  • Yongcan Chen

    (Tsinghua University
    Southwest University of Science and Technology)

Abstract

Through numerical simulation using the three-dimensional Delft3D-Flow model, a unique phenomenon was found in a tropical, large, riverine reservoir in China on the Lancang-Mekong River, namely the Nuozhadu Reservoir. The surface water temperature rises significantly from the upper end of the reservoir to the dam, by about + 3.8 ℃ per 100 km, far exceeding the original longitudinal increase rate before construction of the reservoir. As a result, the water is always warmer than the air in front of the dam all the year round. Analysis illustrated that this phenomenon results from the strong solar radiation in the tropical region and the strong thermal stratification in the reservoir and the increase of surface water temperature is positively correlated with the hydraulic residence time. This phenomenon may have an important effect on the local environment; since there are many large, riverine reservoirs in tropical regions across the world, this study can serve as a reference for the management of the reservoirs with similar characteristics.

Suggested Citation

  • Shibo Guo & Dejun Zhu & Yongcan Chen, 2023. "Modelling and Analyzing a Unique Phenomenon of Surface Water Temperature Rise in a Tropical, Large, Riverine Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1711-1727, March.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:4:d:10.1007_s11269-023-03450-y
    DOI: 10.1007/s11269-023-03450-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03450-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03450-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakaphon Singto & Martijn Vries & Gert Jan Hofstede & Luuk Fleskens, 2021. "Ex Ante Impact Assessment of Reservoir Construction Projects for Different Stakeholders Using Agent-Based Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1047-1064, February.
    2. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    2. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    3. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    4. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    5. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    6. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    7. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    8. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    9. Pu, Kexin & Huang, Bin & Miao, Hongjiang & Shi, Peili & Wu, Dazhuan, 2022. "Quantitative analysis of energy loss and vibration performance in a circulating axial pump," Energy, Elsevier, vol. 243(C).
    10. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    11. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    12. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    13. Hennig, Thomas & Wang, Wenling & Feng, Yan & Ou, Xiaokun & He, Daming, 2013. "Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 585-595.
    14. Fang, Yiping & Deng, Wei, 2011. "The critical scale and section management of cascade hydropower exploitation in Southwestern China," Energy, Elsevier, vol. 36(10), pages 5944-5953.
    15. Yang, Weijia & Norrlund, Per & Bladh, Johan & Yang, Jiandong & Lundin, Urban, 2018. "Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants," Applied Energy, Elsevier, vol. 212(C), pages 1138-1152.
    16. Huan-Feng Duan & Xichao Gao, 2019. "Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3523-3545, August.
    17. Dragomir, George & Șerban, Alexandru & Năstase, Gabriel & Brezeanu, Alin Ionuț, 2016. "Wind energy in Romania: A review from 2009 to 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 129-143.
    18. Sheng Chen & Gaohui Li & Delou Wang & Xingtao Wang & Jian Zhang & Xiaodong Yu, 2019. "Impact of Tail Water Fluctuation on Turbine Start-Up and Optimized Regulation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    19. Yan Zhang, 2017. "Accelerating Sustainability by Hydropower Development in China: The Story of HydroLancang," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    20. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:4:d:10.1007_s11269-023-03450-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.