IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006392.html
   My bibliography  Save this article

A bearing fault data augmentation method based on hybrid-diversity loss diffusion model and parameter transfer

Author

Listed:
  • Wei, Yuan
  • Xiao, Zhijun
  • Chen, Xiangyan
  • Gu, Xiaohui
  • Schröder, Kai-Uwe

Abstract

The fault diagnosis of mechanical equipment can prevent potential mechanical failures, avoid property damage and personal injury, and ensure the stable and safe operation of mechanical equipment. Data driven is an important aspect of intelligent fault diagnosis. When data is scarce, it can seriously affect the accuracy of fault diagnosis and make it difficult to ensure the smooth and safe operation of machinery. Faced with this challenge, a classifier-free guidance diffusion model combining hybrid loss and diversity loss (CFGDMHD) is proposed for data augmentation of fault samples. This new data augmentation method generates samples with the same data distribution as real samples from random noise through diffusion process. CFGDMHD can generate multi-class samples simultaneously without the need for additional classifier guidance in the joint training of unconditional diffusion models and conditional diffusion models. This work proposes diversity loss to improve the diversity of generated samples. We conducted experiments using a bearing dataset. The results indicate that the sample quality and diversity generated by this method are excellent, which can help improve the accuracy of fault diagnosis and ensure the safe operation of mechanical systems.

Suggested Citation

  • Wei, Yuan & Xiao, Zhijun & Chen, Xiangyan & Gu, Xiaohui & Schröder, Kai-Uwe, 2025. "A bearing fault data augmentation method based on hybrid-diversity loss diffusion model and parameter transfer," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006392
    DOI: 10.1016/j.ress.2024.110567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
    2. Tian, Jilun & Jiang, Yuchen & Zhang, Jiusi & Luo, Hao & Yin, Shen, 2024. "A novel data augmentation approach to fault diagnosis with class-imbalance problem," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Shi, Mingkuan & Ding, Chuancang & Wang, Rui & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2023. "Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    5. Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Shi, Peiming & Wu, Shuping & Xu, Xuefang & Zhang, Bofei & Liang, Pengfei & Qiao, Zijian, 2023. "TSN: A novel intelligent fault diagnosis method for bearing with small samples under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    7. Xie, Tianming & Xu, Qifa & Jiang, Cuixia & Lu, Shixiang & Wang, Xiangxiang, 2023. "The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 202(C), pages 143-153.
    8. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Sun, Quan & Peng, Fei & Yu, Xianghai & Li, Hongsheng, 2023. "Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Li, Duowei & Wong, Yiik Diew & Chen, Tianyi & Wang, Nanxi & Yuen, Kum Fai, 2024. "An ensemble method for investigating maritime casualties resulting in pollution occurrence: Data augmentation and feature analysis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Li, Zhenning & Jiang, Hongkai & Wang, Xin, 2025. "A novel reinforcement learning agent for rotating machinery fault diagnosis with data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    5. Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Kohtz, Sara & Zhao, Junhan & Renteria, Anabel & Lalwani, Anand & Xu, Yanwen & Zhang, Xiaolong & Haran, Kiruba Sivasubramaniam & Senesky, Debbie & Wang, Pingfeng, 2024. "Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    8. Qian, XiaoYi & Sun, TianHe & Zhang, YuXian & Wang, BaoShi & Awad Gendeel, Mohammed Altayeb, 2023. "Wind turbine fault detection based on spatial-temporal feature and neighbor operation state," Renewable Energy, Elsevier, vol. 219(P1).
    9. Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    11. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    13. Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    14. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Li, Ying & Zhang, Lijie & Liang, Pengfei & Wang, Xiangfeng & Wang, Bin & Xu, Leitao, 2024. "Semi-supervised meta-path space extended graph convolution network for intelligent fault diagnosis of rotating machinery under time-varying speeds," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    17. Teng, Da & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi & Chen, Jun-Yu, 2024. "Vectorial generative adversarial surrogate modeling reliability evaluation framework for engineering structural systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    19. Zhang, Jiusi & Tian, Jilun & Yan, Pengfei & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Ren, Xinyu & Zhao, Wanli & Liu, Mengmeng & Wang, Suixin & Shao, Haidong & Zhao, Ke, 2024. "Multi-source domain self-supervised enhanced transfer fault diagnosis approach with source sample refinement strategy," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.