IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v170y2021icp539-561.html
   My bibliography  Save this article

Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression

Author

Listed:
  • Avendaño-Valencia, Luis David
  • Abdallah, Imad
  • Chatzi, Eleni

Abstract

We propose a data-driven model to predict the short-term fatigue Damage Equivalent Loads (DEL) on a wake-affected wind turbine based on wind field inflow sensors and/or loads sensors deployed on an adjacent up-wind wind turbine. Gaussian Process Regression (GPR) with Bayesian hyperparameters calibration is proposed to obtain a surrogate from input random variables to output DELs in the blades and towers of the up-wind and wake-affected wind turbines. A sensitivity analysis based on the hyperparameters of the GPR and Kullback-Leibler divergence is conducted to assess the effect of different input on the obtained DELs. We provide qualitative recommendations for a minimal set of necessary and sufficient input random variables to minimize the error in the DEL predictions on the wake-affected wind turbine. Extensive simulations are performed comprising different random variables, including wind speed, turbulence intensity, shear exponent and inflow horizontal skewness. Furthermore, we include random variables related to the blades lift and drag coefficients with direct impact on the rotor aerodynamic induction, which governs the evolution and transport of the meandering wake. In addition, different spacing between the wind turbines and Wöhler exponents for calculation of DELs are considered. The maximum prediction normalized mean squared error, obtained in the tower base DELs in the fore-aft direction of the wake affected wind turbine, is less than 4%. In the case of the blade root DELs, the overall prediction error is less than 1%. The proposed scheme promotes utilization of sparse structural monitoring (loads) measurements for improving diagnostics on wake-affected turbines.

Suggested Citation

  • Avendaño-Valencia, Luis David & Abdallah, Imad & Chatzi, Eleni, 2021. "Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression," Renewable Energy, Elsevier, vol. 170(C), pages 539-561.
  • Handle: RePEc:eee:renene:v:170:y:2021:i:c:p:539-561
    DOI: 10.1016/j.renene.2021.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
    2. Ren, Chao & Xing, Yihan, 2023. "AK-MDAmax: Maximum fatigue damage assessment of wind turbine towers considering multi-location with an active learning approach," Renewable Energy, Elsevier, vol. 215(C).
    3. Cuauhtemoc Acosta Lúa & Domenico Bianchi & Salvador Martín Baragaño & Mario Di Ferdinando & Stefano Di Gennaro, 2023. "Robust Nonlinear Control of a Wind Turbine with a Permanent Magnet Synchronous Generator," Energies, MDPI, vol. 16(18), pages 1-19, September.
    4. Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
    5. Moynihan, Bridget & Tronci, Eleonora M. & Hughes, Michael C. & Moaveni, Babak & Hines, Eric, 2024. "Virtual sensing via Gaussian Process for bending moment response prediction of an offshore wind turbine using SCADA data," Renewable Energy, Elsevier, vol. 227(C).
    6. Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).
    7. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    8. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:170:y:2021:i:c:p:539-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.