IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224022692.html
   My bibliography  Save this article

A predictive model with time-varying delays employing channel equalization convolutional neural network for NOx emissions in flexible power generation

Author

Listed:
  • Wang, Zhi
  • Zhou, Huaichun
  • Peng, Xianyong
  • Cao, Shengxian
  • Tang, Zhenhao
  • Li, Kuangyu
  • Fan, Siyuan
  • Xue, Wenyuan
  • Yao, Guojia
  • Xu, Shiming

Abstract

This study aims to predict NOx (i.e. NO + NO2) emissions at the selective catalytic reduction inlet from coal-fired boilers. It develops a lightweight predictive model that can be adapted to the generation system dominated by renewable energy with fluctuating power. The random forest algorithm was first used to select the input variables from the auxiliary variables. The maximum information coefficient algorithm was then used to estimate the time delay between the input variables and the NOx emissions. Afterwards, to overcome the “channel collapse” issue in convolutional neural networks (CNNs), a Channel Equalization block (CE-Block) was proposed to activate the suppressed channels, and a lightweight network, referred to as CE-CNN, was designed by fusing a CNN with the CE-Block. Finally, a dynamic NOx emissions prediction model was developed employing the CE-CNN, and the model was evaluated using real data from a 600 MW down-fired boiler. The results showed that the dimensionality reduction policy decreased the model training time by 21.74 %, and the analysis of the time delay decreased the RMSE by 7.31 %. Compared to the baseline model 3-layer CNN, the proposed model achieves performance improvements of 20.97 %, 22.11 %, and 3.48 % in terms of RMSE, MAE, and R2, respectively.

Suggested Citation

  • Wang, Zhi & Zhou, Huaichun & Peng, Xianyong & Cao, Shengxian & Tang, Zhenhao & Li, Kuangyu & Fan, Siyuan & Xue, Wenyuan & Yao, Guojia & Xu, Shiming, 2024. "A predictive model with time-varying delays employing channel equalization convolutional neural network for NOx emissions in flexible power generation," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022692
    DOI: 10.1016/j.energy.2024.132495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morris, Jonathan D. & Daood, Syed Sheraz & Nimmo, William, 2022. "The use of kaolin and dolomite bed additives as an agglomeration mitigation method for wheat straw and miscanthus biomass fuels in a pilot-scale fluidized bed combustor," Renewable Energy, Elsevier, vol. 196(C), pages 749-762.
    2. Vojáček, Ondřej & Sobotka, Ladislav & Macháč, Jan & Žilka, Miroslav, 2018. "Impact assessment of Proposal for a Directive on the limitation of emissions from medium combustion plants – National impact assessment compared to the European impact estimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1854-1862.
    3. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    4. Li, Xiaoguang & Zeng, Lingyan & Zhang, Ning & Zhang, Xin & Song, Minhang & Chen, Zhichao & Li, Zhengqi, 2022. "Effects of the gas/particle flow and combustion characteristics on water-wall temperature and energy conversion in a supercritical down-fired boiler at different secondary-air distributions," Energy, Elsevier, vol. 238(PC).
    5. Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
    6. Tang, Zhenhao & Wang, Shikui & Chai, Xiangying & Cao, Shengxian & Ouyang, Tinghui & Li, Yang, 2022. "Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction," Energy, Elsevier, vol. 256(C).
    7. Eom, Yong Hwan & Chung, Yoong & Park, Minsu & Hong, Sung Bin & Kim, Min Soo, 2021. "Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions," Energy, Elsevier, vol. 228(C).
    8. Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
    9. Sousa, Joana & Soares, Isabel, 2022. "Demand response potential: An economic analysis for MIBEL and EEX," Energy, Elsevier, vol. 244(PA).
    10. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    11. Susan C. Anenberg & Joshua Miller & Ray Minjares & Li Du & Daven K. Henze & Forrest Lacey & Christopher S. Malley & Lisa Emberson & Vicente Franco & Zbigniew Klimont & Chris Heyes, 2017. "Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets," Nature, Nature, vol. 545(7655), pages 467-471, May.
    12. Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
    13. Smrekar, J. & Potočnik, P. & Senegačnik, A., 2013. "Multi-step-ahead prediction of NOx emissions for a coal-based boiler," Applied Energy, Elsevier, vol. 106(C), pages 89-99.
    14. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    15. Eslick, John C. & Zamarripa, Miguel A. & Ma, Jinliang & Wang, Maojian & Bhattacharya, Indrajit & Rychener, Brian & Pinkston, Philip & Bhattacharyya, Debangsu & Zitney, Stephen E. & Burgard, Anthony P., 2022. "Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application," Applied Energy, Elsevier, vol. 319(C).
    16. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    17. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    18. Hong, Ying-Yi & Rioflorido, Christian Lian Paulo P., 2019. "A hybrid deep learning-based neural network for 24-h ahead wind power forecasting," Applied Energy, Elsevier, vol. 250(C), pages 530-539.
    19. Sun, Lei & Liu, Tianyuan & Xie, Yonghui & Zhang, Di & Xia, Xinlei, 2021. "Real-time power prediction approach for turbine using deep learning techniques," Energy, Elsevier, vol. 233(C).
    20. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    21. Correia-da-Silva, João & Soares, Isabel & Fernández, Raquel, 2020. "Impact of dynamic pricing on investment in renewables," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    2. Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
    3. Han, Zhezhe & Tang, Xiaoyu & Xie, Yue & Liang, Ruiyu & Bao, Yongqiang, 2024. "Prediction of heavy-oil combustion emissions with a semi-supervised learning model considering variable operation conditions," Energy, Elsevier, vol. 288(C).
    4. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    5. Wu, Yixi & Wang, Ziqi & Shi, Chenli & Jin, Xiaohang & Xu, Zhengguo, 2024. "A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance," Energy, Elsevier, vol. 304(C).
    6. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    7. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    8. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    9. Wang, Yingnan & Chen, Xu & Zhao, Chunhui, 2024. "A data-driven soft sensor model for coal-fired boiler SO2 concentration prediction with non-stationary characteristic," Energy, Elsevier, vol. 300(C).
    10. Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
    11. Wu, Zheng & Zhang, Yue & Dong, Ze, 2024. "NOx concentration prediction based on multi-channel fused spectral temporal graph neural network in coal-fired power plants," Energy, Elsevier, vol. 305(C).
    12. Wu, Zheng & Zhang, Yue & Dong, Ze, 2023. "Prediction of NOx emission concentration from coal-fired power plant based on joint knowledge and data driven," Energy, Elsevier, vol. 271(C).
    13. Choi, Minsung & Park, Yeseul & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2021. "Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes," Energy, Elsevier, vol. 217(C).
    14. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
    15. Ögren, Yngve & Tóth, Pál & Garami, Attila & Sepman, Alexey & Wiinikka, Henrik, 2018. "Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors," Applied Energy, Elsevier, vol. 226(C), pages 450-460.
    16. Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
    17. Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Deng, Kaiwen & Park, Yeseul & Seo, Minseok & Sung, Yonmo & Choi, Gyungmin, 2020. "Strategic combustion technology with exhaust tube vortex flame: Combined effect of biomass co-firing and air-staged combustion on combustion characteristics and ash deposition," Energy, Elsevier, vol. 203(C).
    18. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    19. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    20. Wang, Zhimin & Huang, Qian & Liu, Guanqing & Wang, Kexuan & Lyu, Junfu & Li, Shuiqing, 2024. "Knowledge-inspired data-driven prediction of overheating risks in flexible thermal-power plants," Applied Energy, Elsevier, vol. 364(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.