IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222027347.html
   My bibliography  Save this article

A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions

Author

Listed:
  • Chen, Yu-Zhi
  • Tsoutsanis, Elias
  • Wang, Chen
  • Gou, Lin-Feng

Abstract

In recent years there has been a growing interest in gas turbine fault diagnosis, especially under dynamic conditions, due to the evolving operating profile of gas turbines and the need to deploy computationally efficient and high-precision diagnostic solutions in real-time. One of the main challenges of fault diagnosis in real-time is the power imbalance between the compressor and turbine that occurs during transient operation. In addition, the heat soakage phenomenon characterizing the transient conditions has a substantial impact on the accuracy of the diagnosis. Finally, any sudden failure that might happen during transient operating conditions creates an additional challenge to fault diagnostics. The present study proposes a gas turbine diagnostic approach based on time-series measurements encapsulating steady-state and transient operating conditions. Specifically, the introduced novel approach is capable of quantifying the surplus/deficit of the power between the compressor and the turbine by utilizing the time-series data representing the observed deviations in the shaft rotational speed in order to determine the power balance in the shaft. The maximum diagnostic errors for constant fault and sudden failure are less than 0.006% during the dynamic maneuver. The results demonstrate and illustrate that the proposed method could effectively and accurately diagnose the severity of aero-engine faults at both steady-state and transient conditions. Therefore, this study has great potential for gas turbine practitioners since the diagnosis under transient conditions in real-time can enhance the capability of engine online condition monitoring and improve the condition-based maintenance of gas turbine assets.

Suggested Citation

  • Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222027347
    DOI: 10.1016/j.energy.2022.125848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    2. Chen, Yu-Zhi & Li, Yi-Guang & Newby, Mike A., 2019. "Performance simulation of a parallel dual-pressure once-through steam generator," Energy, Elsevier, vol. 173(C), pages 16-27.
    3. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    4. Tsoutsanis, Elias & Meskin, Nader, 2017. "Derivative-driven window-based regression method for gas turbine performance prognostics," Energy, Elsevier, vol. 128(C), pages 302-311.
    5. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    6. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    7. Mohammadian, Poorya Keshavarz & Saidi, Mohammad Hassan, 2019. "Simulation of startup operation of an industrial twin-shaft gas turbine based on geometry and control logic," Energy, Elsevier, vol. 183(C), pages 1295-1313.
    8. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
    9. Palmé, Thomas & Fast, Magnus & Thern, Marcus, 2011. "Gas turbine sensor validation through classification with artificial neural networks," Applied Energy, Elsevier, vol. 88(11), pages 3898-3904.
    10. Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
    11. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    12. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    13. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    14. Ibrahem, Ibrahem M.A. & Akhrif, Ouassima & Moustapha, Hany & Staniszewski, Martin, 2021. "Nonlinear generalized predictive controller based on ensemble of NARX models for industrial gas turbine engine," Energy, Elsevier, vol. 230(C).
    15. Seyam, Shaimaa & Dincer, Ibrahim & Agelin-Chaab, Martin, 2021. "Investigation of two hybrid aircraft propulsion and powering systems using alternative fuels," Energy, Elsevier, vol. 232(C).
    16. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    17. Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).
    18. Kiaee, Mehrdad & Tousi, A.M., 2021. "Vector-based deterioration index for gas turbine gas-path prognostics modeling framework," Energy, Elsevier, vol. 216(C).
    19. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    20. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    2. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    3. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    4. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    5. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    6. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    7. Zagorowska, Marta & Schulze Spüntrup, Frederik & Ditlefsen, Arne-Marius & Imsland, Lars & Lunde, Erling & Thornhill, Nina F., 2020. "Adaptive detection and prediction of performance degradation in off-shore turbomachinery," Applied Energy, Elsevier, vol. 268(C).
    8. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    9. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    10. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    11. Feng, Hailong & Liu, Bei & Xu, Maojun & Li, Ming & Song, Zhiping, 2024. "Model-based deduction learning control: A novel method for optimizing gas turbine engine afterburner transient," Energy, Elsevier, vol. 292(C).
    12. Qiang, Xiaoqing & Lu, Yao & Li, Jian, 2024. "Bleed air CFD modelling in aerodynamic simulation of A heavy duty gas turbine compressor," Energy, Elsevier, vol. 299(C).
    13. Jesus L. Lobo & Igor Ballesteros & Izaskun Oregi & Javier Del Ser & Sancho Salcedo-Sanz, 2020. "Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants," Energies, MDPI, vol. 13(3), pages 1-28, February.
    14. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    15. Seong Won Moon & Tong Seop Kim, 2020. "Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability," Energies, MDPI, vol. 13(21), pages 1-23, October.
    16. Martí de Castro-Cros & Manel Velasco & Cecilio Angulo, 2021. "Machine-Learning-Based Condition Assessment of Gas Turbines—A Review," Energies, MDPI, vol. 14(24), pages 1-27, December.
    17. Jia, Xingyun & Zhou, Dengji, 2024. "Multi-variable anti-disturbance controller with state-dependent switching law for adaptive cycle engine," Energy, Elsevier, vol. 288(C).
    18. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
    19. Kiaee, Mehrdad & Tousi, A.M., 2021. "Vector-based deterioration index for gas turbine gas-path prognostics modeling framework," Energy, Elsevier, vol. 216(C).
    20. Wang, Xiao & Sun, Xiao-Xue & Chu, Shu-Chuan & Watada, Junzo & Pan, Jeng-Shyang, 2023. "Improved butterfly optimization algorithm applied to prediction of combined cycle power plant," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 337-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222027347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.