IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018373.html
   My bibliography  Save this article

How to reduce carbon emissions in the urban transportation systems through carbon markets? Balancing the monetary and environmental benefits

Author

Listed:
  • Ding, Yanyan
  • Jian, Sisi
  • Yu, Lin

Abstract

The transition from gasoline-powered vehicles (GVs) to electric vehicles (EVs) is crucial for promoting green transportation. However, this transition poses challenges for mobility service providers (MSPs) due to increased operational costs. Motivating MSPs to adopt EVs and minimizing the negative impact on the urban transportation system requires effective strategies. Government agencies (Govs) commonly employ market-oriented instruments (e.g., carbon cap-and-trade schemes) and non-market-oriented instruments (e.g., the installment of emission reduction devices for GVs) to address emission reduction goals. In response to the Gov emission reduction policies, MSPs must decide whether to (i) replace their GVs with EVs and (ii) install emission reduction devices and purchase emission quotas for their GVs. The dynamics of emission quota supply and demand further influence equilibrium carbon prices in the carbon market. To capture the complex interactions between MSPs and the Gov, we propose a bilevel optimization model. Building upon this model, we consider two extensions: First, MSPs have the flexibility to adjust the number of operating vehicles. Second, there are heterogeneous MSPs, with some exclusively owning EVs and others owning GVs. Analytical findings reveal that MSPs benefit from replacing GVs with EVs only when the cost of EV replacement is less than or equal to the monetary benefit obtained by selling excess emission quotas in the carbon market. Moreover, as the Gov imposes stricter regulations, the EV replacement rate is more likely to increase, while the cumulative number of operating vehicles decreases, which ultimately passes on the emission reduction costs to travelers.

Suggested Citation

  • Ding, Yanyan & Jian, Sisi & Yu, Lin, 2025. "How to reduce carbon emissions in the urban transportation systems through carbon markets? Balancing the monetary and environmental benefits," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018373
    DOI: 10.1016/j.apenergy.2024.124454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. Lode Li & Hongtao Zhang, 2008. "Confidentiality and Information Sharing in Supply Chain Coordination," Management Science, INFORMS, vol. 54(8), pages 1467-1481, August.
    3. Hua, Min & Zhang, Cetengfei & Zhang, Fanggang & Li, Zhi & Yu, Xiaoli & Xu, Hongming & Zhou, Quan, 2023. "Energy management of multi-mode plug-in hybrid electric vehicle using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 348(C).
    4. Jia, Zhijie & Lin, Boqiang & Liu, Xiying, 2023. "Rethinking the equity and efficiency of carbon tax: A novel perspective," Applied Energy, Elsevier, vol. 346(C).
    5. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    6. Srivastava, Abhishek & Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mateen, Arqum & Narayanamurthy, Gopalakrishnan, 2022. "Design and selection of government policies for electric vehicles adoption: A global perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Chen, Xu & Wang, Xiaojun, 2016. "Effects of carbon emission reduction policies on transportation mode selections with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 196-205.
    8. Li, Xiangyi & Castellanos, Sebastian & Maassen, Anne, 2018. "Emerging trends and innovations for electric bus adoption—a comparative case study of contracting and financing of 22 cities in the Americas, Asia-Pacific, and Europe," Research in Transportation Economics, Elsevier, vol. 69(C), pages 470-481.
    9. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    11. Dao-Li Zhu & Hai Yang & Chang-Min Li & Xiao-Lei Wang, 2015. "Properties of the Multiclass Traffic Network Equilibria Under a Tradable Credit Scheme," Transportation Science, INFORMS, vol. 49(3), pages 519-534, August.
    12. World Bank, "undated". "State and Trends of Carbon Pricing 2022," World Bank Publications - Reports 37455, The World Bank Group.
    13. Charles Raux & Yves Croissant & Damien Pons, 2015. "Would personal carbon trading reduce travel emissions more effectively than a carbon tax?," Post-Print halshs-01099917, HAL.
    14. Michael K. Lim & Ho-Yin Mak & Ying Rong, 2015. "Toward Mass Adoption of Electric Vehicles: Impact of the Range and Resale Anxieties," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 101-119, February.
    15. Li, Kunpeng & Wang, Lan, 2023. "Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    16. Woo, Hyeon & Son, Yongju & Cho, Jintae & Kim, Sung-Yul & Choi, Sungyun, 2023. "Optimal expansion planning of electric vehicle fast charging stations," Applied Energy, Elsevier, vol. 342(C).
    17. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    18. Liang Guo & Tian Li & Hongtao Zhang, 2014. "Strategic Information Sharing in Competing Channels," Production and Operations Management, Production and Operations Management Society, vol. 23(10), pages 1719-1731, October.
    19. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    20. Ding, Yanyan & Jian, Sisi, 2022. "Strategic collaboration between land owners and charging station operators: Lease or outsource?," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 183-211.
    21. Gong, Xu & Li, Zhi-Chun, 2022. "Determination of subsidy and emission control coverage under competition and cooperation of China-Europe Railway Express and liner shipping," Transport Policy, Elsevier, vol. 125(C), pages 323-335.
    22. Demir, Emrah & Huang, Yuan & Scholts, Sebastiaan & Van Woensel, Tom, 2015. "A selected review on the negative externalities of the freight transportation: Modeling and pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 95-114.
    23. Albert Y. Ha & Shilu Tong & Hongtao Zhang, 2011. "Sharing Demand Information in Competing Supply Chains with Production Diseconomies," Management Science, INFORMS, vol. 57(3), pages 566-581, March.
    24. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong & Yang, Hai, 2012. "Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1273-1287.
    25. Lättilä, Lauri & Henttu, Ville & Hilmola, Olli-Pekka, 2013. "Hinterland operations of sea ports do matter: Dry port usage effects on transportation costs and CO2 emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 23-42.
    26. Wu, Huihuang & Zhou, Yuhan & Wang, Xian & Hu, Xiurong & Zhang, Shihui & Ren, Yang & Liu, Junfeng & Liu, Ying & Tao, Shu, 2024. "The climate, health, and economic outcomes across different carbon pricing policies to achieve China's climate goals," Applied Energy, Elsevier, vol. 368(C).
    27. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    28. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    29. Deakin, Elizabeth, 2001. "Sustainable Development & Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity," University of California Transportation Center, Working Papers qt8mf1z8mh, University of California Transportation Center.
    30. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asgarian, Fariba & Hejazi, Seyed Reza & Khosroshahi, Hossein & Safarzadeh, Soroush, 2024. "Vehicle pricing considering EVs promotion and public transportation investment under governmental policies on sustainable transportation development: The case of Norway," Transport Policy, Elsevier, vol. 153(C), pages 204-221.
    2. Feng, Jian & Yao, Yifan & Liu, Zhenfeng & Liu, Zhenling, 2024. "Electric vehicle charging stations' installing strategies: Considering government subsidies," Applied Energy, Elsevier, vol. 370(C).
    3. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2021. "Tradable credit scheme design with transaction cost and equity constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    4. Luan, Mingye & Waller, S.Travis & Rey, David, 2023. "A non-additive path-based reward credit scheme for traffic congestion management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    5. Pi, Zhenyang & Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2024. "Transitioning from gasoline to electric vehicles: Electrification decision of automakers under purchase and station subsidies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    6. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Fan, Ruochuan & Chen, Junlan, 2022. "Managing bottleneck congestion with tradable credit scheme under demand uncertainty," Research in Transportation Economics, Elsevier, vol. 95(C).
    7. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2024. "When should capital-constrained swap service providers partner with battery lessors?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    8. Siyu Chen & Ravi Seshadri & Carlos Lima Azevedo & Arun P. Akkinepally & Renming Liu & Andrea Araldo & Yu Jiang & Moshe E. Ben-Akiva, 2021. "Market Design for Tradable Mobility Credits," Papers 2101.00669, arXiv.org, revised Sep 2022.
    9. Tian, Ye & Chiu, Yi-Chang & Sun, Jian, 2019. "Understanding behavioral effects of tradable mobility credit scheme: An experimental economics approach," Transport Policy, Elsevier, vol. 81(C), pages 1-11.
    10. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    11. Ravi Seshadri & André de Palma & Moshe Ben-Akiva, 2021. "Congestion Tolling−Dollars versus Tokens: Within-day Dynamics," THEMA Working Papers 2021-12, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    12. Liu, Hao & Jiang, Wei & Feng, Gengzhong & Chin, Kwai-Sang, 2020. "Information leakage and supply chain contracts," Omega, Elsevier, vol. 90(C).
    13. Wu, Junjian & Wang, Haiyan & Shang, Jennifer, 2019. "Multi-sourcing and information sharing under competition and supply uncertainty," European Journal of Operational Research, Elsevier, vol. 278(2), pages 658-671.
    14. Weidong Zhang & Fuqiang Wang, 2022. "Information Sharing in Competing Supply Chains with Carbon Emissions Reduction Incentives," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    15. Ding, Hongxing & Yang, Hai & Qin, Xiaoran & Xu, Hongli, 2023. "Credit charge-cum-reward scheme for green multi-modal mobility," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    16. Zheng, Shiyuan & Jiang, Changmin, 2024. "Consortium blockchain in Shipping: Impacts on industry and social welfare," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    17. Kuppusamy, Saravanan & Magazine, Michael J. & Rao, Uday, 2023. "Impact of downstream emissions cap-and-trade policy on electric vehicle and clean utility adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    18. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    19. Li Jiang & Zhongyuan Hao, 2016. "Incentive-Driven Information Dissemination in Two-Tier Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 393-413, July.
    20. Guan, Zili & Zhang, Xumei & Zhou, Maosen & Dan, Yiran, 2020. "Demand information sharing in competing supply chains with manufacturer-provided service," International Journal of Production Economics, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.