IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015766.html
   My bibliography  Save this article

Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications

Author

Listed:
  • Wang, Chuang
  • Liu, Mingkun
  • Wang, Bingqi
  • Xing, Ziwen
  • Shu, Yue

Abstract

The water-lubricated twin-screw air compressor is very suitable for applications in high-pressure PEMFCs in distributed power generation, for it can provide absolutely oil-free air. Power consumption distribution is a significant characteristic for clarifying the influence mechanism of water injection and lubrication, which could provide the optimizing direction for performance enhancement. Hence, a mathematical model is constructed in this paper, aiming to analyze the power consumption distribution in different positions of the compressor at different rotating speed, including indicated power of dry air, water vapor and liquid water, friction power in the rotor chamber, friction power of radial journal bearings, thrust bearings and the lip seal. Results show that thrust bearings account for the largest amount of total power loss by over 52%, followed by indicated power of liquid water, radial journal bearings, while the indicated power of water vapor, friction powers in the rotor chamber and of the lip seal are minor power losses. This is very different from the common oil-injected twin-screw compressors, in which the friction power in the rotor chamber is also the dominant power loss. It illustrates the advantage of the low friction coefficient of water for sealing clearances in the water-lubricated twin-screw air compressor.

Suggested Citation

  • Wang, Chuang & Liu, Mingkun & Wang, Bingqi & Xing, Ziwen & Shu, Yue, 2022. "Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015766
    DOI: 10.1016/j.energy.2022.124673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
    3. Chen, Huicui & Liu, Zhao & Ye, Xichen & Yi, Liu & Xu, Sichen & Zhang, Tong, 2022. "Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Dong-Min & Chin, Jun-Woo & Kim, Jae-Hyun & Lim, Myung-Seop, 2023. "Analytical temperature estimation process of the air supply system of the proton exchange membrane fuel cell stack in fuel cell electric vehicles," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    2. Zhou, Su & Xie, Zhengchun & Chen, Chunguang & Zhang, Gang & Guo, Junhua, 2022. "Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 324(C).
    3. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    4. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    5. Ferreira, Victor J. & Wolff, Deidre & Hornés, Aitor & Morata, Alex & Torrell, M. & Tarancón, Albert & Corchero, Cristina, 2021. "5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits," Applied Energy, Elsevier, vol. 291(C).
    6. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    7. Wei Li & Jisheng Liu & Pengcheng Fang & Jinxin Cheng, 2021. "A Novel Surface Parameterization Method for Optimizing Radial Impeller Design in Fuel Cell System," Energies, MDPI, vol. 14(9), pages 1-25, May.
    8. Antoine Bäumler & Jianwen Meng & Abdelmoudjib Benterki & Toufik Azib & Moussa Boukhnifer, 2023. "A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process," Energies, MDPI, vol. 16(14), pages 1-19, July.
    9. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Kim, Dong-Min & Chin, Jun-Woo & Kim, Jae-Hyun & Lim, Myung-Seop, 2023. "Analytical temperature estimation process of the air supply system of the proton exchange membrane fuel cell stack in fuel cell electric vehicles," Energy, Elsevier, vol. 283(C).
    11. Le, Son Tay & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Teodosio, Birch & Ngo, Tuan Duc, 2024. "Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios," Energy, Elsevier, vol. 290(C).
    12. Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
    13. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    14. Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
    15. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    16. Shi, Ting & Peng, Xueyuan & Feng, Jianmei & Guo, Yi & Wang, Bingsheng, 2024. "Study on the startup-shutdown performance of gas foil bearings-rotor system in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 226(C).
    17. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    18. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    19. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    20. Jia, Fei & Tian, Xiaodi & Liu, Fengfeng & Ye, Junjie & Yang, Chengpeng, 2023. "Oxidant starvation under various operating conditions on local and transient performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.