IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4830-d1175514.html
   My bibliography  Save this article

Distributed Intelligence in Autonomous PEM Fuel Cell Control

Author

Listed:
  • Abel Rubio

    (Center for Research, Development and Innovation of Computer Systems (CIDIS)—Faculty of Engineering in Electricity and Computation (FIEC), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Wilton Agila

    (Center for Research, Development and Innovation of Computer Systems (CIDIS)—Faculty of Engineering in Electricity and Computation (FIEC), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Leandro González

    (Center for Automation and Robotics (CSIC-UPM), Ctra. Campo Real km. 0,200, 28500 Arganda del Rey, Spain
    The National Hydrogen and Fuel Cell Technology Testing Centre (CNH2), Prolongación Fernando el Santo, s/n, 13500 Puertollano, Spain)

  • Jonathan Aviles-Cedeno

    (Center for Research, Development and Innovation of Computer Systems (CIDIS)—Faculty of Engineering in Electricity and Computation (FIEC), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil P.O. Box 09-01-5863, Ecuador)

Abstract

A combination of perceptive and deliberative processes is necessary to ensure the efficient and autonomous control of proton exchange membrane fuel cells (PEMFCs) under optimal humidification conditions. These processes enable monitoring and control tasks across various application scenarios and operating conditions. Consequently, it becomes crucial to adjust parameter values corresponding to different states of the PEMFC during its operation. In this context, this work presents the design and development of an architecture for the control and management of a PEMFC with a maximum power output of 500 [W] based on intelligent agents operating under optimal conditions (membrane humidification). The proposed architecture integrates perception and action algorithms that leverage sensory and contextual information using heuristic algorithms. It adopts a hierarchical structure with distinct layers, each featuring varying time windows and levels of abstraction. Notably, this architecture demonstrates its effectiveness in achieving the desired energy efficiency objective, as evidenced by successful validation tests conducted with different electrical power values delivered by the fuel cell, encompassing three distinct operating states (dry, normal, and flooded). An exemplary application of this scheme is the dynamic control of the humidification of the polymeric membrane, which further highlights the capabilities of this architecture.

Suggested Citation

  • Abel Rubio & Wilton Agila & Leandro González & Jonathan Aviles-Cedeno, 2023. "Distributed Intelligence in Autonomous PEM Fuel Cell Control," Energies, MDPI, vol. 16(12), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4830-:d:1175514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Bo & Li, Danyang & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Wang, Jingbo & Shu, Hongchun & Yu, Tao & Zhu, Jiawei, 2021. "Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms," Energy, Elsevier, vol. 228(C).
    2. Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
    3. Mahmoud S. AbouOmar & Hua-Jun Zhang & Yi-Xin Su, 2019. "Fractional Order Fuzzy PID Control of Automotive PEM Fuel Cell Air Feed System Using Neural Network Optimization Algorithm," Energies, MDPI, vol. 12(8), pages 1-23, April.
    4. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    5. Chavan, Sudarshan L. & Talange, Dhananjay B., 2017. "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters," Energy, Elsevier, vol. 138(C), pages 437-445.
    6. Sun, Li & Shen, Jiong & Hua, Qingsong & Lee, Kwang Y., 2018. "Data-driven oxygen excess ratio control for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 231(C), pages 866-875.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuechao & Chen, Jinzhou & Quan, Shengwei & Wang, Ya-Xiong & He, Hongwen, 2020. "Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells," Applied Energy, Elsevier, vol. 276(C).
    2. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    3. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    4. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    5. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    6. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    7. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
    9. Sun, Li & Jin, Yuhui & You, Fengqi, 2020. "Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 261(C).
    10. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).
    11. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    12. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    13. Sun, Li & Li, Guanru & Hua, Q.S. & Jin, Yuhui, 2020. "A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control," Renewable Energy, Elsevier, vol. 147(P1), pages 1642-1652.
    14. Yuxiao Qin & Guodong Zhao & Qingsong Hua & Li Sun & Soumyadeep Nag, 2019. "Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    15. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    16. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    17. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    18. Reza Ghasemi & Mehdi Sedighi & Mostafa Ghasemi & Bita Sadat Ghazanfarpoor, 2023. "Design of a Fuzzy Adaptive Voltage Controller for a Nonlinear Polymer Electrolyte Membrane Fuel Cell with an Unknown Dynamical System," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    19. Fan Zhang & Yali Xue & Donghai Li & Zhenlong Wu & Ting He, 2019. "On the Flexible Operation of Supercritical Circulating Fluidized Bed: Burning Carbon Based Decentralized Active Disturbance Rejection Control," Energies, MDPI, vol. 12(6), pages 1-18, March.
    20. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4830-:d:1175514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.