IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223014275.html
   My bibliography  Save this article

Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate

Author

Listed:
  • Kuczyński, Tadeusz
  • Staszczuk, Anna

Abstract

The main objective of the study was to evaluate the effects of PCM and traditional masonry construction on the summer thermal performance of the non-air-conditioned residential building in a temperate climate. The research was conducted in three rooms. In the first case, the lightweight frame construction of the walls and ceiling was covered with gypsum board on the inside, while in the second, a layer of Rubitherm® RT25HC was placed. The third room used masonry walls and a reinforced concrete roof. All rooms had identical flooring. The study was conducted between 13.08 and 18.09.2020. For the night period, various rates of mechanical ventilation were used to maintain the room temperature within the range of optimal PCM melting temperatures. The results of the study indicate significantly higher effectiveness of traditional high thermal capacity building materials than PCMs for lowering high indoor temperatures in summer. This occurs when there is a marked increase in outdoor temperature on at least one day, while at the same time the indoor temperature does not significantly exceed the PCM's melting temperature range specified by the manufacturer. Studies have further shown that the cooling efficiency of PCMs remains at a reasonably high level only for a small number of days in summer. This occurs when there is a marked increase in outdoor temperature on at least one day, while at the same time the indoor temperature does not significantly exceed the PCM's melting temperature range specified by the manufacturer.

Suggested Citation

  • Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014275
    DOI: 10.1016/j.energy.2023.128033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barreneche, Camila & Navarro, Lidia & de Gracia, Alvaro & Fernández, A. Inés & Cabeza, Luisa F., 2016. "In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications," Renewable Energy, Elsevier, vol. 85(C), pages 281-286.
    2. Reilly, Aidan & Kinnane, Oliver, 2017. "The impact of thermal mass on building energy consumption," Applied Energy, Elsevier, vol. 198(C), pages 108-121.
    3. Staszczuk, Anna & Kuczyński, Tadeusz, 2021. "The impact of wall and roof material on the summer thermal performance of building in a temperate climate," Energy, Elsevier, vol. 228(C).
    4. Olivier Dartevelle & Sergio Altomonte & Gabrielle Masy & Erwin Mlecnik & Geoffrey van Moeseke, 2022. "Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium)," Energies, MDPI, vol. 15(7), pages 1-13, March.
    5. Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
    7. Kuznik, Frédéric & Virgone, Joseph, 2009. "Experimental assessment of a phase change material for wall building use," Applied Energy, Elsevier, vol. 86(10), pages 2038-2046, October.
    8. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    9. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    10. Werner, Sven, 2016. "European space cooling demands," Energy, Elsevier, vol. 110(C), pages 148-156.
    11. Kolokotroni, M. & Aronis, A., 1999. "Cooling-energy reduction in air-conditioned offices by using night ventilation," Applied Energy, Elsevier, vol. 63(4), pages 241-253, August.
    12. Anaïs Machard & Christian Inard & Jean-Marie Alessandrini & Charles Pelé & Jacques Ribéron, 2020. "A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data," Energies, MDPI, vol. 13(13), pages 1-36, July.
    13. Peacock, A.D. & Jenkins, D.P. & Kane, D., 2010. "Investigating the potential of overheating in UK dwellings as a consequence of extant climate change," Energy Policy, Elsevier, vol. 38(7), pages 3277-3288, July.
    14. Joanna Ferdyn-Grygierek & Krzysztof Grygierek & Anna Gumińska & Piotr Krawiec & Adrianna Oćwieja & Robert Poloczek & Julia Szkarłat & Aleksandra Zawartka & Daria Zobczyńska & Daria Żukowska-Tejsen, 2021. "Passive Cooling Solutions to Improve Thermal Comfort in Polish Dwellings," Energies, MDPI, vol. 14(12), pages 1-15, June.
    15. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    16. Artmann, N. & Manz, H. & Heiselberg, P., 2008. "Parameter study on performance of building cooling by night-time ventilation," Renewable Energy, Elsevier, vol. 33(12), pages 2589-2598.
    17. Nikolaos Christidis & Gareth S. Jones & Peter A. Stott, 2015. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave," Nature Climate Change, Nature, vol. 5(1), pages 46-50, January.
    18. Tadeusz Kuczyński & Anna Staszczuk & Piotr Ziembicki & Anna Paluszak, 2021. "The Effect of the Thermal Mass of the Building Envelope on Summer Overheating of Dwellings in a Temperate Climate," Energies, MDPI, vol. 14(14), pages 1-17, July.
    19. Kuznik, Frédéric & Virgone, Joseph & Johannes, Kevyn, 2011. "In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard," Renewable Energy, Elsevier, vol. 36(5), pages 1458-1462.
    20. Al-Sanea, Sami A. & Zedan, M.F. & Al-Hussain, S.N., 2013. "Effect of masonry material and surface absorptivity on critical thermal mass in insulated building walls," Applied Energy, Elsevier, vol. 102(C), pages 1063-1070.
    21. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    22. Shaviv, Edna & Yezioro, Abraham & Capeluto, Isaac G, 2001. "Thermal mass and night ventilation as passive cooling design strategy," Renewable Energy, Elsevier, vol. 24(3), pages 445-452.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haitao & Wei, Jiahua & Guo, Chengzhou & Yang, Liu & Wang, Zuyuan, 2024. "Numerical investigation of the effects of different influencing factors on thermal performance of naturally ventilated roof," Energy, Elsevier, vol. 289(C).
    2. Belatrache, Djamel & Bentouba, Said & Zioui, Nadjet & Bourouis, Mahmoud, 2023. "Energy efficiency and thermal comfort of buildings in arid climates employing insulating material produced from date palm waste matter," Energy, Elsevier, vol. 283(C).
    3. Zhou, Shiqiang & Razaqpur, A. Ghani, 2024. "CFD modeling and experimental validation of the thermal performance of a novel dynamic PCM Trombe wall: Comparison with the companion static wall with and without PCM," Applied Energy, Elsevier, vol. 353(PA).
    4. Xu, Dawei & Yan, Tian & Xu, Xinhua & Wu, Wei & Zhu, Qiuyuan, 2024. "Study of the characteristics of the separated gravity heat pipe of a self-activated PCM wall system," Energy, Elsevier, vol. 298(C).
    5. Tadeusz Kuczyński & Anna Staszczuk, 2023. "Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating," Energies, MDPI, vol. 16(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    2. Tadeusz Kuczyński & Anna Staszczuk & Piotr Ziembicki & Anna Paluszak, 2021. "The Effect of the Thermal Mass of the Building Envelope on Summer Overheating of Dwellings in a Temperate Climate," Energies, MDPI, vol. 14(14), pages 1-17, July.
    3. Ramponi, Rubina & Angelotti, Adriana & Blocken, Bert, 2014. "Energy saving potential of night ventilation: Sensitivity to pressure coefficients for different European climates," Applied Energy, Elsevier, vol. 123(C), pages 185-195.
    4. Liu, Jiang & Liu, Yan & Yang, Liu & Liu, Tang & Zhang, Chen & Dong, Hong, 2020. "Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China," Renewable Energy, Elsevier, vol. 147(P1), pages 356-373.
    5. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    6. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    7. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    8. Staszczuk, Anna & Kuczyński, Tadeusz, 2021. "The impact of wall and roof material on the summer thermal performance of building in a temperate climate," Energy, Elsevier, vol. 228(C).
    9. Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
    10. Staszczuk, A. & Kuczyński, T., 2019. "The impact of floor thermal capacity on air temperature and energy consumption in buildings in temperate climate," Energy, Elsevier, vol. 181(C), pages 908-915.
    11. Nikola Pesic & Jaime Roset Calzada & Adrian Muros Alcojor, 2018. "Assessment of Advanced Natural Ventilation Space Cooling Potential across Southern European Coastal Region," Sustainability, MDPI, vol. 10(9), pages 1-21, August.
    12. Anna Dudzińska & Tomasz Kisilewicz, 2020. "Alternative Ways of Cooling a Passive School Building in Order to Maintain Thermal Comfort in Summer," Energies, MDPI, vol. 14(1), pages 1-20, December.
    13. Guo, Rui & Gao, Yafeng & Zhuang, Chaoqun & Heiselberg, Per & Levinson, Ronnen & Zhao, Xia & Shi, Dachuan, 2020. "Optimization of cool roof and night ventilation in office buildings: A case study in Xiamen, China," Renewable Energy, Elsevier, vol. 147(P1), pages 2279-2294.
    14. Artmann, N. & Manz, H. & Heiselberg, P., 2008. "Parameter study on performance of building cooling by night-time ventilation," Renewable Energy, Elsevier, vol. 33(12), pages 2589-2598.
    15. Carlo Costantino & Stefano Bigiotti & Alvaro Marucci & Riccardo Gulli, 2024. "Long-Term Comparative Life Cycle Assessment, Cost, and Comfort Analysis of Heavyweight vs. Lightweight Construction Systems in a Mediterranean Climate," Sustainability, MDPI, vol. 16(20), pages 1-29, October.
    16. Lei, Jiawei & Kumarasamy, Karthikeyan & Zingre, Kishor T. & Yang, Jinglei & Wan, Man Pun & Yang, En-Hua, 2017. "Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics," Applied Energy, Elsevier, vol. 190(C), pages 57-63.
    17. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    18. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    19. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.