IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp852-872.html
   My bibliography  Save this article

Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium

Author

Listed:
  • Toparlar, Y.
  • Blocken, B.
  • Maiheu, B.
  • van Heijst, G.J.F.

Abstract

Meteorological measurements are conducted in Antwerp, Belgium in July 2013, followed by CFD urban microclimate simulations considering the same city and time period. The simulations are found to be able to reproduce measured air temperatures inside central Antwerp with an average absolute difference of 0.88 °C. The simulation results supplemented with measurements are used to generate location-specific Microclimatic Conditions (MCs) in three locations: (1) a rural location outside Antwerp; (2) an urban location inside Antwerp, away from an urban park; and (3) another urban location, close to the same park. Building Energy Simulations (BES) are performed for 36 cases based on three different MCs, two building use types and six sets of construction characteristics, ranging from pre-1946 buildings to new, low-energy buildings. Monthly Cooling Demands (CDs) are extracted for each case and compared with each other. The results demonstrate that compared to the air temperatures in the rural area, on average, air temperatures at the urban sites away and close to the park are 3.3 °C and 2.4 °C higher, respectively. This leads to an additional monthly CD of up to 90%. CDs of buildings with better thermal insulation and lower infiltration rates can increase by 48% once moved from the rural location to an urban location, which may lead to the reconsideration of design guidelines of low-energy buildings exposed to an urban MC. Although the proximity of an urban park cannot fully compensate the increased CD by an urban MC, residential buildings close to the park are found to have on average 13.9% less CD during July 2013, compared with buildings away from the same park. The influence of the urban park on the CDs of buildings in its vicinity is strongly linked to the meteorological wind direction. Professionals focusing on energy-efficient buildings in cities are advised to conduct energy predictions with location-specific MC data, instead of only using city-averaged meteorological data.

Suggested Citation

  • Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:852-872
    DOI: 10.1016/j.apenergy.2018.06.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918309814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
    2. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    3. He, Jiang & Hoyano, Akira & Asawa, Takashi, 2009. "A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance," Applied Energy, Elsevier, vol. 86(9), pages 1596-1605, September.
    4. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    5. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    6. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    7. Eicker, Ursula, 2010. "Cooling strategies, summer comfort and energy performance of a rehabilitated passive standard office building," Applied Energy, Elsevier, vol. 87(6), pages 2031-2039, June.
    8. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    9. Kolokotroni, M. & Aronis, A., 1999. "Cooling-energy reduction in air-conditioned offices by using night ventilation," Applied Energy, Elsevier, vol. 63(4), pages 241-253, August.
    10. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    11. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    12. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    13. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    14. Ihara, Tomohiko & Kikegawa, Yukihiro & Asahi, Kazutake & Genchi, Yutaka & Kondo, Hiroaki, 2008. "Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures," Applied Energy, Elsevier, vol. 85(1), pages 12-25, January.
    15. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance," Sustainability, MDPI, vol. 7(7), pages 1-24, July.
    16. Campaniço, Hugo & Hollmuller, Pierre & Soares, Pedro M.M., 2014. "Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation," Applied Energy, Elsevier, vol. 134(C), pages 426-438.
    17. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    18. Kikegawa, Yukihiro & Genchi, Yutaka & Kondo, Hiroaki & Hanaki, Keisuke, 2006. "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning," Applied Energy, Elsevier, vol. 83(6), pages 649-668, June.
    19. Davies, Mike & Steadman, Philip & Oreszczyn, Tadj, 2008. "Strategies for the modification of the urban climate and the consequent impact on building energy use," Energy Policy, Elsevier, vol. 36(12), pages 4548-4551, December.
    20. Ruth, Matthias & Lin, Ai-Chen, 2006. "Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA," Energy Policy, Elsevier, vol. 34(17), pages 2820-2833, November.
    21. Rode, Philipp & Keim, Christian & Robazza, Guido & Viejo, Pablo & Schofield, James, 2014. "Cities and energy: urban morphology and residential heat-energy demand," LSE Research Online Documents on Economics 60778, London School of Economics and Political Science, LSE Library.
    22. Ramponi, Rubina & Angelotti, Adriana & Blocken, Bert, 2014. "Energy saving potential of night ventilation: Sensitivity to pressure coefficients for different European climates," Applied Energy, Elsevier, vol. 123(C), pages 185-195.
    23. Kikegawa, Yukihiro & Genchi, Yutaka & Yoshikado, Hiroshi & Kondo, Hiroaki, 2003. "Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands," Applied Energy, Elsevier, vol. 76(4), pages 449-466, December.
    24. Philipp Rode & Christian Keim & Guido Robazza & Pablo Viejo & James Schofield, 2014. "Cities and Energy: Urban Morphology and Residential Heat-Energy Demand," Environment and Planning B, , vol. 41(1), pages 138-162, February.
    25. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín Mosteiro-Romero & Arno Schlueter, 2021. "Effects of Occupants and Local Air Temperatures as Sources of Stochastic Uncertainty in District Energy System Modeling," Energies, MDPI, vol. 14(8), pages 1-30, April.
    2. Yaping Chen & Chun Wang & Yinze Hu, 2024. "Energy Consumption and Outdoor Thermal Comfort Characteristics in High-Density Urban Areas Based on Local Climate Zone—A Case Study of Changsha, China," Sustainability, MDPI, vol. 16(16), pages 1-35, August.
    3. H. Pallubinsky & R. P. Kramer & W. D. Marken Lichtenbelt, 2023. "Establishing resilience in times of climate change—a perspective on humans and buildings," Climatic Change, Springer, vol. 176(10), pages 1-19, October.
    4. Wei Chen & Jianjun Zhang & Xuelian Shi & Shidong Liu, 2020. "Impacts of Building Features on the Cooling Effect of Vegetation in Community-Based MicroClimate: Recognition, Measurement and Simulation from a Case Study of Beijing," IJERPH, MDPI, vol. 17(23), pages 1-22, November.
    5. Zhou, Xiaohai & Carmeliet, Jan & Sulzer, Matthias & Derome, Dominique, 2020. "Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves," Applied Energy, Elsevier, vol. 278(C).
    6. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    7. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    8. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    9. Shareef, Sundus & Altan, Hasim, 2022. "Urban block configuration and the impact on energy consumption: A case study of sinuous morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Maria Alejandra Del Rio & Takashi Asawa & Yukari Hirayama, 2020. "Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    11. Kyoumars Habibi & Seyedeh Maryam Hoseini & Majid Dehshti & Mojtaba Khanian & Amir Mosavi, 2020. "The Impact of Natural Elements on Environmental Comfort in the Iranian-Islamic Historical City of Isfahan," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    12. He, Q. & Tapia, F. & Reith, A., 2023. "Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    13. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    14. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "The Development of ARIMA Models for the Clear Sky Beam and Diffuse Optical Depths for HVAC Systems Design Using RTSM: A Case Study of the Umlazi Township Area, South Africa," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    15. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    16. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    17. Ulpiani, Giulia & di Perna, Costanzo & Zinzi, Michele, 2019. "Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality," Applied Energy, Elsevier, vol. 239(C), pages 1091-1113.
    18. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    2. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    3. Zinzi, Michele & Carnielo, Emiliano & Mattoni, Benedetta, 2018. "On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy," Applied Energy, Elsevier, vol. 221(C), pages 148-160.
    4. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    5. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    6. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    7. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    8. Rafiee, A. & Dias, E. & Koomen, E., 2019. "Analysing the impact of spatial context on the heat consumption of individual households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 461-470.
    9. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    10. Yanxue Li & Dawei Wang & Shanshan Li & Weijun Gao, 2021. "Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and Microclimate Based on Field Measurement Data," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    11. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    12. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    13. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    14. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    15. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    16. Dong-Hyeon Kim & Byeong-Il Ahn & Eui-Gyeong Kim, 2016. "Metropolitan Residents’ Preferences and Willingness to Pay for a Life Zone Forest for Mitigating Heat Island Effects during Summer Season in Korea," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    17. Sophia Kappou & Manolis Souliotis & Spiros Papaefthimiou & Giorgos Panaras & John A. Paravantis & Evanthie Michalena & Jeremy Maxwell Hills & Andreas P. Vouros & Aikaterini Ntymenou & Giouli Mihalakak, 2022. "Cool Pavements: State of the Art and New Technologies," Sustainability, MDPI, vol. 14(9), pages 1-32, April.
    18. Nikola Pesic & Jaime Roset Calzada & Adrian Muros Alcojor, 2018. "Assessment of Advanced Natural Ventilation Space Cooling Potential across Southern European Coastal Region," Sustainability, MDPI, vol. 10(9), pages 1-21, August.
    19. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    20. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:852-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.