Alternative Ways of Cooling a Passive School Building in Order to Maintain Thermal Comfort in Summer
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kolokotroni, M. & Aronis, A., 1999. "Cooling-energy reduction in air-conditioned offices by using night ventilation," Applied Energy, Elsevier, vol. 63(4), pages 241-253, August.
- Małgorzata Fedorczak-Cisak & Marcin Furtak & Jolanta Gintowt & Alicja Kowalska-Koczwara & Filip Pachla & Krzysztof Stypuła & Tadeusz Tatara, 2018. "Thermal and Vibration Comfort Analysis of a Nearly Zero-Energy Building in Poland," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
- Artmann, N. & Manz, H. & Heiselberg, P., 2008. "Parameter study on performance of building cooling by night-time ventilation," Renewable Energy, Elsevier, vol. 33(12), pages 2589-2598.
- Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anna Dudzińska, 2021. "Efficiency of Solar Shading Devices to Improve Thermal Comfort in a Sports Hall," Energies, MDPI, vol. 14(12), pages 1-26, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
- Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
- Ramponi, Rubina & Angelotti, Adriana & Blocken, Bert, 2014. "Energy saving potential of night ventilation: Sensitivity to pressure coefficients for different European climates," Applied Energy, Elsevier, vol. 123(C), pages 185-195.
- Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
- Nikola Pesic & Jaime Roset Calzada & Adrian Muros Alcojor, 2018. "Assessment of Advanced Natural Ventilation Space Cooling Potential across Southern European Coastal Region," Sustainability, MDPI, vol. 10(9), pages 1-21, August.
- Guo, Rui & Hu, Yue & Heiselberg, Per & Johra, Hicham & Zhang, Chen & Peng, Pei, 2021. "Simulation and optimization of night cooling with diffuse ceiling ventilation and mixing ventilation in a cold climate," Renewable Energy, Elsevier, vol. 179(C), pages 488-501.
- Artmann, N. & Manz, H. & Heiselberg, P., 2008. "Parameter study on performance of building cooling by night-time ventilation," Renewable Energy, Elsevier, vol. 33(12), pages 2589-2598.
- Lei, Jiawei & Kumarasamy, Karthikeyan & Zingre, Kishor T. & Yang, Jinglei & Wan, Man Pun & Yang, En-Hua, 2017. "Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics," Applied Energy, Elsevier, vol. 190(C), pages 57-63.
- Guo, Rui & Gao, Yafeng & Zhuang, Chaoqun & Heiselberg, Per & Levinson, Ronnen & Zhao, Xia & Shi, Dachuan, 2020. "Optimization of cool roof and night ventilation in office buildings: A case study in Xiamen, China," Renewable Energy, Elsevier, vol. 147(P1), pages 2279-2294.
- Lei Tang & Zhengtao Ai & Chunyan Song & Guoqiang Zhang & Zhengxuan Liu, 2021. "A Strategy to Maximally Utilize Outdoor Air for Indoor Thermal Environment," Energies, MDPI, vol. 14(13), pages 1-13, July.
- Ji, Wenhui & Wang, Houhua & Du, Tao & Zhang, Zili, 2019. "Parametric study on a wall-mounted attached ventilation system for night cooling with different supply air conditions," Renewable Energy, Elsevier, vol. 143(C), pages 1865-1876.
- Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
- Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016.
"Energy saving potential of natural ventilation in China: The impact of ambient air pollution,"
Applied Energy, Elsevier, vol. 179(C), pages 660-668.
- Zheming Tong & Yujiao Chen & Malkawi, Ali & Zhu Liu & Richard B. Freeman, "undated". "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Working Paper 428396, Harvard University OpenScholar.
- Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
- Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
- Zhou, Guobing & Yang, Yongping & Wang, Xin & Zhou, Shaoxiang, 2009. "Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation," Applied Energy, Elsevier, vol. 86(1), pages 52-59, January.
- Ghasan Fahim Huseien & Kwok Wei Shah, 2021. "Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
- Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
- Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
- Marek Dudzik & Anna Romanska-Zapala & Mark Bomberg, 2020. "A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.
More about this item
Keywords
thermal comfort; overheating; discomfort; weighted measure of discomfort; energy efficiency; Design Builder;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:70-:d:468153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.