IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7558-d1279323.html
   My bibliography  Save this article

Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating

Author

Listed:
  • Tadeusz Kuczyński

    (Institute of Environmental Engineering, University of Zielona Góra, Prof. Z. Szafrana Str. 15, 65-516 Zielona Góra, Poland)

  • Anna Staszczuk

    (Institute of Civil Engineering, University of Zielona Góra, Prof. Z. Szafrana Str. 1, 65-516 Zielona Góra, Poland)

Abstract

Studies of the effects of removing underfloor insulation and increasing the thermal capacity of building walls are currently found almost exclusively in existing vernacular architecture and rammed-earth buildings, mostly in countries with warm climates. This paper proposes the combined use of these two measures to reduce the risk of overheating in a detached single-family house in a temperate climate during the summer. Experimental studies conducted during the largest heat wave on record in the summer of 2019 showed that peak daytime temperatures decreased by 5.2 °C to 7.1 °C, and peak nighttime temperatures decreased by 4.7 °C to 6.8 °C. Simulation studies taking into account occupant heat showed that the proposed passive methods could, under the IPCC 8.5 scenario, eliminate the need for mechanical cooling in a detached single-family house in the temperate climate of Central and Eastern Europe by 2100. The actual heating energy consumption for the building with an uninsulated floor and increased wall heat capacity was 5.5 kWh/m 2 higher than for the reference building, indicating that it can be a near-zero energy building. The proposed concept is in line with the new approach to the energy design of buildings, which should not be limited to reducing thermal energy demand, but should also respond to the needs arising from global warming.

Suggested Citation

  • Tadeusz Kuczyński & Anna Staszczuk, 2023. "Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating," Energies, MDPI, vol. 16(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7558-:d:1279323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O' Donovan, Adam & O' Sullivan, Paul D. & Murphy, Michael D., 2019. "Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches," Applied Energy, Elsevier, vol. 250(C), pages 991-1010.
    2. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
    3. Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
    4. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
    2. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    3. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    4. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    5. Chen, Xiaoming & Zhang, Quan & Zhai, Zhiqiang John & Ma, Xiaowei, 2019. "Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings," Renewable Energy, Elsevier, vol. 138(C), pages 39-53.
    6. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    7. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    8. Lehmann, B. & Dorer, V. & Gwerder, M. & Renggli, F. & Tödtli, J., 2011. "Thermally activated building systems (TABS): Energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system," Applied Energy, Elsevier, vol. 88(1), pages 180-191, January.
    9. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    11. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    12. Haibo Guo & Lu Huang & Wenjie Song & Xinyue Wang & Hongnan Wang & Xinning Zhao, 2020. "Evaluation of the Summer Overheating Phenomenon in Reinforced Concrete and Cross Laminated Timber Residential Buildings in the Cold and Severe Cold Regions of China," Energies, MDPI, vol. 13(23), pages 1-25, November.
    13. Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
    14. Xu, Bin & Chen, Xing-ni & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Optimizing the applicability of cool paint through phase change material according to the energy consumption characteristics in different regions," Renewable Energy, Elsevier, vol. 212(C), pages 953-971.
    15. Haolia Rahman & Hwataik Han, 2019. "Correlation of Ventilative Cooling Potentials and Building Energy Savings in Various Climatic Zones," Energies, MDPI, vol. 12(6), pages 1-10, March.
    16. Wang, Haitao & Wei, Jiahua & Guo, Chengzhou & Yang, Liu & Wang, Zuyuan, 2024. "Numerical investigation of the effects of different influencing factors on thermal performance of naturally ventilated roof," Energy, Elsevier, vol. 289(C).
    17. Jihan Muhaidat & Aiman Albatayneh & Mohammed N. Assaf & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "The Significance of Occupants’ Interaction with Their Environment on Reducing Cooling Loads and Dermatological Distresses in East Mediterranean Climates," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    18. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    19. Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
    20. Campaniço, Hugo & Hollmuller, Pierre & Soares, Pedro M.M., 2014. "Assessing energy savings in cooling demand of buildings using passive cooling systems based on ventilation," Applied Energy, Elsevier, vol. 134(C), pages 426-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7558-:d:1279323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.