IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp654-664.html
   My bibliography  Save this article

Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach

Author

Listed:
  • Ramakrishnan, Sayanthan
  • Wang, Xiaoming
  • Sanjayan, Jay
  • Wilson, John

Abstract

This paper presents a comprehensive experimental and numerical investigation on thermal enhancement of form-stable phase change material (PCM) integrated cementitious composites, with the goal of applying as interior surface plastering mortars in building walls. The composite PCM fabricated on paraffin/hydrophobic expanded perlite (EPO) showed an apparent density and 28-day compressive strength of 1244.2kg/m3 and 17.9MPa respectively, when integrated into ordinary cementitious composite at 80% volume replacement of fine aggregate. The thermal performance of PCM integrated cementitious composites was experimentally assessed using a prototype test cell made with PCM integrated cement boards (PCMCB) subjected to realistic temperature cycles. The comparison study considers two reference prototypes made with gypsum plasterboards (GPB) and ordinary cement boards (OCB). It was found that the prototype incorporated with PCMCB reduced the peak indoor temperature by up to 2.8°C and 4.43°C during typical summer days and summer design days respectively, compared to the GPB test cell. Numerical simulations conducted on a multi-storey office building for the application of PCMCB as interior surface plastering mortars showed that the PCMCB could significantly reduce the peak indoor temperature and diurnal temperature fluctuations. Indeed, the interior surface application of PCM has limited cold storage at night, leading to reduced latent heat storage. However, cold storage of PCM could be improved by introducing night ventilation. The combined application of PCMCB and night ventilation reduced the peak indoor operative temperature by up to 3.4°C, as opposed to 2.5°C for building refurbishment with PCMCB only.

Suggested Citation

  • Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:654-664
    DOI: 10.1016/j.apenergy.2017.05.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730689X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    2. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    3. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    4. Zhou, Guobing & Yang, Yongping & Wang, Xin & Cheng, Jinming, 2010. "Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves," Applied Energy, Elsevier, vol. 87(8), pages 2666-2672, August.
    5. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    6. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events," Applied Energy, Elsevier, vol. 194(C), pages 410-421.
    7. Zhang, Zhengguo & Zhang, Ni & Peng, Jing & Fang, Xiaoming & Gao, Xuenong & Fang, Yutang, 2012. "Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 91(1), pages 426-431.
    8. Kheradmand, Mohammad & Azenha, Miguel & de Aguiar, José L.B. & Castro-Gomes, João, 2016. "Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings," Energy, Elsevier, vol. 94(C), pages 250-261.
    9. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2017. "Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 707-726.
    10. Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
    11. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    12. Xu, Biwan & Ma, Hongyan & Lu, Zeyu & Li, Zongjin, 2015. "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites," Applied Energy, Elsevier, vol. 160(C), pages 358-367.
    13. Zhou, D. & Shire, G.S.F. & Tian, Y., 2014. "Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW)," Applied Energy, Elsevier, vol. 119(C), pages 33-42.
    14. Li, Huiqiang & Chen, Huisu & Li, Xiangyu & Sanjayan, Jay G., 2014. "Development of thermal energy storage composites and prevention of PCM leakage," Applied Energy, Elsevier, vol. 135(C), pages 225-233.
    15. Xu, Biwan & Li, Zongjin, 2014. "Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material," Applied Energy, Elsevier, vol. 121(C), pages 114-122.
    16. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    17. Zhang, Zhengguo & Shi, Guoquan & Wang, Shuping & Fang, Xiaoming & Liu, Xiaohong, 2013. "Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material," Renewable Energy, Elsevier, vol. 50(C), pages 670-675.
    18. Xu, Biwan & Li, Zongjin, 2013. "Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 105(C), pages 229-237.
    19. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing & Yan, Jinyue, 2009. "Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage," Applied Energy, Elsevier, vol. 86(9), pages 1479-1483, September.
    20. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    21. Li, Min & Wu, Zhishen & Tan, Jinmiao, 2013. "Heat storage properties of the cement mortar incorporated with composite phase change material," Applied Energy, Elsevier, vol. 103(C), pages 393-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Yasiri, Qudama & Szabó, Márta, 2022. "Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate: An experimental study," Applied Energy, Elsevier, vol. 314(C).
    2. Kenzhekhanov, Sultan & Memon, Shazim Ali & Adilkhanova, Indira, 2020. "Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate," Energy, Elsevier, vol. 192(C).
    3. Ana Cecilia Borbon-Almada & Norma Alejandra Rodriguez-Muñoz & Mario Najera-Trejo, 2019. "Energy and Economic Impact on the Application of Low-Cost Lightweight Materials in Economic Housing Located in Dry Climates," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    4. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Kishor T. Zingre & Kiran Kumar D. E. V. S. & Man Pun Wan, 2020. "Analysing the Effect of Substrate Properties on Building Envelope Thermal Performance in Various Climates," Energies, MDPI, vol. 13(19), pages 1-8, October.
    6. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    7. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
    8. Liu, Zu-An & Hou, Jiawen & Chen, Yu & Liu, Zaiqiang & Zhang, Tao & Zeng, Qian & Dewancker, Bart Julien & Meng, Xi & Jiang, Guanzhao, 2023. "Effectiveness assessment of different kinds/configurations of phase-change materials (PCM) for improving the thermal performance of lightweight building walls in summer and winter," Renewable Energy, Elsevier, vol. 202(C), pages 721-735.
    9. Adilkhanova, Indira & Memon, Shazim Ali & Kim, Jong & Sheriyev, Almas, 2021. "A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime," Energy, Elsevier, vol. 217(C).
    10. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    11. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    12. Almas Sheriyev & Shazim Ali Memon & Indira Adilkhanova & Jong Kim, 2021. "Effect of Phase Change Materials on the Thermal Performance of Residential Building Located in Different Cities of a Tropical Rainforest Climate Zone," Energies, MDPI, vol. 14(9), pages 1-22, May.
    13. Rongda Ye & Xiaoming Fang & Zhengguo Zhang, 2021. "Numerical Study on Energy-Saving Performance of a New Type of Phase Change Material Room," Energies, MDPI, vol. 14(13), pages 1-18, June.
    14. Gu, Xiaobin & Liu, Peng & Bian, Liang & He, Huichao, 2019. "Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 833-841.
    15. Liu, Jiang & Liu, Yan & Yang, Liu & Liu, Tang & Zhang, Chen & Dong, Hong, 2020. "Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China," Renewable Energy, Elsevier, vol. 147(P1), pages 356-373.
    16. Tomasz Kułakowski & Michał Krempski-Smejda & Dariusz Heim, 2021. "Heat Transfer with Phase Change in a Multilayer Construction: Simulation versus Experiment," Energies, MDPI, vol. 14(15), pages 1-17, July.
    17. Yu, Kunyang & Jia, Minjie & Yang, Yingzi & Liu, Yushi, 2023. "A clean strategy of concrete curing in cold climate: Solar thermal energy storage based on phase change material," Applied Energy, Elsevier, vol. 331(C).
    18. Zhang, Yuan & Jiang, Weixue & Song, Jinwei & Xu, Li & Li, Shengcai & Hu, Lantian, 2023. "A parametric model on thermal evaluation of building envelopes containing phase change material," Applied Energy, Elsevier, vol. 331(C).
    19. Pal, Monalisa & Alyafi, Amr Alzouhri & Ploix, Stéphane & Reignier, Patrick & Bandyopadhyay, Sanghamitra, 2019. "Unmasking the causal relationships latent in the interplay between occupant’s actions and indoor ambience: A building energy management outlook," Applied Energy, Elsevier, vol. 238(C), pages 1452-1470.
    20. Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay & Ramakrishnan, Sayanthan, 2019. "Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne," Applied Energy, Elsevier, vol. 238(C), pages 1582-1595.
    21. Tadeusz Kuczyński & Anna Staszczuk & Piotr Ziembicki & Anna Paluszak, 2021. "The Effect of the Thermal Mass of the Building Envelope on Summer Overheating of Dwellings in a Temperate Climate," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    2. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    3. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    4. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    6. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2016. "Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid," Applied Energy, Elsevier, vol. 168(C), pages 457-464.
    7. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    9. Li, Min & Guo, Qiangang, 2015. "The preparation of the hydrotalcite-based composite phase change material," Applied Energy, Elsevier, vol. 156(C), pages 207-212.
    10. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    12. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
    13. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    14. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    15. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    16. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    17. Li, Xiangyu & Chen, Huisu & Li, Huiqiang & Liu, Lin & Lu, Zeyu & Zhang, Tao & Duan, Wen Hui, 2015. "Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage," Applied Energy, Elsevier, vol. 159(C), pages 601-609.
    18. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    19. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    20. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:654-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.