IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222030031.html
   My bibliography  Save this article

Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection

Author

Listed:
  • Zhang, Qing
  • Gao, Ya
  • Chu, Miaoqi
  • Chen, Pice
  • Zhang, Qingteng
  • Wang, Jin

Abstract

High-pressure direct fuel injection plays the most crucial role in energy conversion and improving engine combustion efficiency and emission. The optimization of turbulent and multiphase fuel injection has focused on controlling hydrodynamic parameters such as injection pressure. While the thermodynamic influence is often considered in the flash boiling situation, we inquire into how gasoline-type fuel's hydro- and thermodynamic properties impact the injection dynamics by fuel-temperature-induced cavitation. The turbulent and cavitating flows emanating from the direct-injection nozzle are visualized by ultrafast x-ray imaging with an unprecedented spatiotemporal resolution. The ultrafast liquid-fuel dynamics are dominated by injection pressure as well as fuel temperature through cavitation, an important thermodynamic parameter but often difficult to control in engine combustion. With the most direct and quantitative measurement, we discovered that the near-nozzle fuel-jet dynamics could be perfectly scaled by a single dimensionless parameter, cavitation number, particularly sensitive to the fuel temperature, in a wide operation range. This universal scaling shows that cavitation can be harnessed to elevate the pneumatic-hydraulic to kinetic energy conversion efficiency, which is critical for promoting fuel atomization and engine combustion performance. This enhancement effect will have even more impact on engine combustion using alternative low-emission fuels with higher saturated vapor pressure.

Suggested Citation

  • Zhang, Qing & Gao, Ya & Chu, Miaoqi & Chen, Pice & Zhang, Qingteng & Wang, Jin, 2023. "Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222030031
    DOI: 10.1016/j.energy.2022.126117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ziman & Wang, Bo & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik, 2016. "Microscopic characterization of isooctane spray in the near field under flash boiling condition," Applied Energy, Elsevier, vol. 180(C), pages 598-606.
    2. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    3. Wang, Bo & Jiang, Yizhou & Hutchins, Peter & Badawy, Tawfik & Xu, Hongming & Zhang, Xinyu & Rack, Alexander & Tafforeau, Paul, 2017. "Numerical analysis of deposit effect on nozzle flow and spray characteristics of GDI injectors," Applied Energy, Elsevier, vol. 204(C), pages 1215-1224.
    4. Ju, Dehao & Huang, Zhong & Jia, Xiaoxu & Qiao, Xinqi & Xiao, Jin & Huang, Zhen, 2016. "Macroscopic characteristics and internal flow pattern of dimethyl ether flash-boiling spray discharged through a vertical twin-orifice injector," Energy, Elsevier, vol. 114(C), pages 1240-1250.
    5. Shi, Guangtai & Wang, Shan & Xiao, Yexiang & Liu, Zongku & Li, Helin & Liu, Xiaobing, 2021. "Effect of cavitation on energy conversion characteristics of a multiphase pump," Renewable Energy, Elsevier, vol. 177(C), pages 1308-1320.
    6. Myung, Cha-Lee & Choi, Kwanhee & Kim, Juwon & Lim, Yunsung & Lee, Jongtae & Park, Simsoo, 2012. "Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum ," Energy, Elsevier, vol. 44(1), pages 189-196.
    7. Zhuang, Yuan & Zhu, Guodong & Gong, Zhen & Wang, Chenfang & Huang, Yuhan, 2019. "Experimental and numerical investigation of performance of an ethanol-gasoline dual-injection engine," Energy, Elsevier, vol. 186(C).
    8. Moon, Seoksu & Li, Tianyun & Sato, Kiyotaka & Yokohata, Hideaki, 2017. "Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors," Energy, Elsevier, vol. 127(C), pages 89-100.
    9. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.
    10. Soid, S.N. & Zainal, Z.A., 2011. "Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review," Energy, Elsevier, vol. 36(2), pages 724-741.
    11. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    12. Feng, Dengquan & Wei, Haiqiao & Pan, Mingzhang & Zhou, Lei & Hua, Jianxiong, 2018. "Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine," Energy, Elsevier, vol. 160(C), pages 573-581.
    13. Qiu, Tao & Wang, Kaixin & Lei, Yan & Wu, Chenglin & Liu, Yuwei & Chen, Xinyu & Guo, Peng, 2018. "Investigation on effects of back pressure on submerged jet flow from short cylindrical orifice filled with diesel fuel," Energy, Elsevier, vol. 162(C), pages 964-976.
    14. Ji, Changwei & Liang, Chen & Gao, Binbin & Wei, Baojian & Liu, Xiaolong & Zhu, Yongming, 2013. "The cold start performance of a spark-ignited dimethyl ether engine," Energy, Elsevier, vol. 50(C), pages 187-193.
    15. Qian, Yong & Chen, Feier & Zhang, Yahui & Tao, Wencao & Han, Dong & Lu, Xingcai, 2019. "Combustion and regulated/unregulated emissions of a direct injection spark ignition engine fueled with C3-C5 alcohol/gasoline surrogate blends," Energy, Elsevier, vol. 174(C), pages 779-791.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pu, Tianhao & Wu, Shengqi & Xie, Mingyun & Pang, Yanshuai & Zhang, Chen, 2023. "Breakup characteristics of ultra-high-pressure GDI spray of a single-hole injector under various thermodynamic conditions," Energy, Elsevier, vol. 285(C).
    2. Wang, Shangning & Zhang, Yijia & Qiu, Shuyi & Hung, David L.S. & Li, Xuesong & Xu, Min, 2024. "Investigation on cavitation enhancement on flash boiling atomization using two-dimensional slit nozzles," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Tianhao & Wu, Shengqi & Xie, Mingyun & Pang, Yanshuai & Zhang, Chen, 2023. "Breakup characteristics of ultra-high-pressure GDI spray of a single-hole injector under various thermodynamic conditions," Energy, Elsevier, vol. 285(C).
    2. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Pastor, J.V. & Bermúdez, V. & García-Oliver, J.M. & Ramírez-Hernández, J.G., 2011. "Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines," Energy, Elsevier, vol. 36(9), pages 5486-5496.
    4. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    5. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    6. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    7. Shang, Zhen & Yu, Xiumin & Ren, Lei & Wei, Guowu & Li, Guanting & Li, Decheng & Li, Yinan, 2020. "Comparative study on effects of injection mode on combustion and emission characteristics of a combined injection n-butanol/gasoline SI engine with hydrogen direct injection," Energy, Elsevier, vol. 213(C).
    8. V. G. Kamaltdinov & V. A. Markov & I. O. Lysov & A. A. Zherdev & V. V. Furman, 2019. "Experimental Studies of Fuel Injection in a Diesel Engine with an Inclined Injector," Energies, MDPI, vol. 12(14), pages 1-18, July.
    9. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    10. Cheolwoong Park & Taeyoung Kim & Gyubaek Cho & Janghee Lee, 2016. "Combustion and Emission Characteristics According to the Fuel Injection Ratio of an Ultra-Lean LPG Direct Injection Engine," Energies, MDPI, vol. 9(11), pages 1-12, November.
    11. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    12. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    13. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    14. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    15. Lin, Wen-Ting & Chen, Guo & Zhou, Xiaojun, 2022. "Distributed carbon-aware energy trading of virtual power plant under denial of service attacks: A passivity-based neurodynamic approach," Energy, Elsevier, vol. 257(C).
    16. Keskinen, Karri & Kaario, Ossi & Nuutinen, Mika & Vuorinen, Ville & Künsch, Zaira & Liavåg, Lars Ola & Larmi, Martti, 2016. "Mixture formation in a direct injection gas engine: Numerical study on nozzle type, injection pressure and injection timing effects," Energy, Elsevier, vol. 94(C), pages 542-556.
    17. Zhai, Chang & Liu, Erwei & Zhang, Gengxin & Xing, Wenjing & Chang, Feixiang & Jin, Yu & Luo, Hongliang & Nishida, Keiya & Ogata, Yoichi, 2024. "Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics," Energy, Elsevier, vol. 288(C).
    18. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    19. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).
    20. Li, Xiaoyan & Zhen, Xudong & Wang, Yang & Tian, Zhi, 2022. "Numerical comparative study on performance and emissions characteristics fueled with methanol, ethanol and methane in high compression spark ignition engine," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222030031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.