IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2643-d247213.html
   My bibliography  Save this article

Experimental Studies of Fuel Injection in a Diesel Engine with an Inclined Injector

Author

Listed:
  • V. G. Kamaltdinov

    (Motor Transport Faculty, South Ural State University, 76, Lenin Ave., Chelyabinsk 454080, Russia)

  • V. A. Markov

    (Power Engineering Faculty, Bauman Moscow State Technical University, 5, 2-ya Baumanskaya Str., Moscow 105005, Russia)

  • I. O. Lysov

    (Motor Transport Faculty, South Ural State University, 76, Lenin Ave., Chelyabinsk 454080, Russia)

  • A. A. Zherdev

    (Power Engineering Faculty, Bauman Moscow State Technical University, 5, 2-ya Baumanskaya Str., Moscow 105005, Russia)

  • V. V. Furman

    (Design and Production Enterprise “Dieselautomatika”, 109, Chernyshevskogo Str., Saratov 410017, Russia)

Abstract

Comparative experimental studies of fuel sprays evolution dynamics in a constant volume chamber were carried out with a view to reduce the uneven distribution of diesel fuel in the combustion chamber when the Common Rail injector is inclined. The fuel sprays was captured by a high-speed camera with simultaneous recording of control pulses of camera and injector on an oscilloscope. Two eight-hole diesel injectors were investigated: One injector with identical orifice diameter (nozzle 1) and another injector with four orifices of the same diameter as orifices of nozzle 1 and four orifices of enlarged diameters (nozzle 2). Both injectors were tested at rail pressure from 100 to 165 MPa and injector control pulse width of 1.5 ms. The dynamics of changes in the spray penetration length and spray cone angle were determined. It was found that sprays develop differently in nozzle 1 fuel. The difference in the length of fuel sprays is 10–15 mm. As for nozzle 2, the fuel sprays develop more evenly: The difference in length is no more than 3–5 mm. The difference of the measured fuel spray cone angles for nozzle 1 is 0.5°–1.5°, and for nozzle 2 is 3.0°–4.0°. It is concluded that the differential increase in the diameters of nozzle orifices, the axes of which are maximally deviated from the injector axis, makes it possible to reduce the uneven distribution of fuel in the combustion chamber and improve the combustion process and the diesel performance as a whole.

Suggested Citation

  • V. G. Kamaltdinov & V. A. Markov & I. O. Lysov & A. A. Zherdev & V. V. Furman, 2019. "Experimental Studies of Fuel Injection in a Diesel Engine with an Inclined Injector," Energies, MDPI, vol. 12(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2643-:d:247213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sattar Jabbar Murad Algayyim & Andrew P. Wandel & Talal Yusaf, 2018. "The Impact of Injector Hole Diameter on Spray Behaviour for Butanol-Diesel Blends," Energies, MDPI, vol. 11(5), pages 1-12, May.
    2. Payri, Raul & Gimeno, Jaime & Bardi, Michele & Plazas, Alejandro H., 2013. "Study liquid length penetration results obtained with a direct acting piezo electric injector," Applied Energy, Elsevier, vol. 106(C), pages 152-162.
    3. Soid, S.N. & Zainal, Z.A., 2011. "Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review," Energy, Elsevier, vol. 36(2), pages 724-741.
    4. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuhiro Yamamoto & Yusei Akai & Naoki Hayashi, 2022. "Numerical Simulation of Spray Combustion with Ultrafine Oxygen Bubbles," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Waldemar Fedak & Roman Ulbrich & Grzegorz Ligus & Marek Wasilewski & Szymon Kołodziej & Barbara Wasilewska & Marek Ochowiak & Sylwia Włodarczak & Andżelika Krupińska & Ivan Pavlenko, 2021. "Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus," Energies, MDPI, vol. 14(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    2. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    3. Pastor, J.V. & Bermúdez, V. & García-Oliver, J.M. & Ramírez-Hernández, J.G., 2011. "Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines," Energy, Elsevier, vol. 36(9), pages 5486-5496.
    4. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    5. Han, Zhiqiang & Li, Bolun & Tian, Wei & Xia, Qi & Leng, Songpeng, 2019. "Influence of coupling action of oxygenated fuel and gas circuit oxygen on hydrocarbons formation in diesel engine," Energy, Elsevier, vol. 173(C), pages 196-206.
    6. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    7. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    8. Lis Corral-Gómez & Octavio Armas & José A. Soriano & José V. Pastor & José M. García-Oliver & Carlos Micó, 2022. "An Optical Engine Used as a Physical Model for Studies of the Combustion Process Applying a Two-Color Pyrometry Technique," Energies, MDPI, vol. 15(13), pages 1-17, June.
    9. Lapuerta, Magín & Hernández, Juan José & Fernández-Rodríguez, David & Cova-Bonillo, Alexis, 2017. "Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber," Energy, Elsevier, vol. 118(C), pages 613-621.
    10. Wei Tian & Yunlu Chu & Zhiqiang Han & Xiang Wang & Wenbin Yu & Xueshun Wu, 2019. "Experimental Study of the Effect of Intake Oxygen Concentration on Engine Combustion Process and Hydrocarbon Emissions with N-Butanol-Diesel Blended Fuel," Energies, MDPI, vol. 12(7), pages 1-17, April.
    11. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    12. Zhai, Chang & Liu, Erwei & Zhang, Gengxin & Xing, Wenjing & Chang, Feixiang & Jin, Yu & Luo, Hongliang & Nishida, Keiya & Ogata, Yoichi, 2024. "Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics," Energy, Elsevier, vol. 288(C).
    13. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    14. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Li, Menghan & Liu, Gengfei & Liu, Xiaori & Li, Zhijie & Zhang, Qiang & Shen, Boxiong, 2019. "Performance of a direct-injection natural gas engine with multiple injection strategies," Energy, Elsevier, vol. 189(C).
    16. Ding, Hong-ming & Zhuo, Chang-fei & Deng, Han-yu & Li, Mao-quan & Chen, Xiong & Sun, Bo, 2023. "Experimental and numerical study on the development process and flow characteristics of powder fuel jet in the powder fuel scramjet," Energy, Elsevier, vol. 262(PA).
    17. Qiu, Tao & Dai, Hefei & Lei, Yan & Cao, Chunlei & Li, Xuchu, 2015. "Optimising the cam profile of an electronic unit pump for a heavy-duty diesel engine," Energy, Elsevier, vol. 83(C), pages 276-283.
    18. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    19. Xuewen Zhang & Xiang Huang & Peiyong Ni & Xiang Li, 2023. "Strategies to Reduce Emissions from Diesel Engines under Cold Start Conditions: A Review," Energies, MDPI, vol. 16(13), pages 1-21, July.
    20. Zhang, Zheng & Liu, Fushui & Wang, Pei & Hu, Ruo & Sun, Baigang, 2017. "Methodology to parametric design of cam profile for electronic unit pump," Energy, Elsevier, vol. 139(C), pages 170-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2643-:d:247213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.