IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v180y2016icp598-606.html
   My bibliography  Save this article

Microscopic characterization of isooctane spray in the near field under flash boiling condition

Author

Listed:
  • Wang, Ziman
  • Wang, Bo
  • Jiang, Changzhao
  • Xu, Hongming
  • Badawy, Tawfik

Abstract

The isooctane spray characteristics were experimentally investigated under flash boiling condition which represents the part load operating condition for modern gasoline engine. Various tests were carried out with back pressure ranging from 0.2bar to 1bar and ambient temperature varying between 20°C and 100°C. A long distance microscope together with an ultrahigh speed camera was employed to capture the spray development in the near field to study the primary breakup characteristics. The study was performed by using a diesel common rail injection system so that the influence of hydraulic force can be investigated. It was found that flash boiling led to dramatic radial propagation due to the explosion and collapse of the vapor bubbles, significantly boosting the atomization. The strength of vapor bubble explosion in the near field tended to be strongly affected by the flow regime in the nozzle. Besides, higher injection pressure led to larger cone angle during the initial injection stage but smaller cone angle during the quasi-steady stage due to the dominance of the hydraulic force.

Suggested Citation

  • Wang, Ziman & Wang, Bo & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik, 2016. "Microscopic characterization of isooctane spray in the near field under flash boiling condition," Applied Energy, Elsevier, vol. 180(C), pages 598-606.
  • Handle: RePEc:eee:appene:v:180:y:2016:i:c:p:598-606
    DOI: 10.1016/j.apenergy.2016.07.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631056X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with split injection," Applied Energy, Elsevier, vol. 163(C), pages 105-117.
    2. Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with single injection," Applied Energy, Elsevier, vol. 165(C), pages 335-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qing & Gao, Ya & Chu, Miaoqi & Chen, Pice & Zhang, Qingteng & Wang, Jin, 2023. "Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection," Energy, Elsevier, vol. 265(C).
    2. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    3. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Kaźmierski, Bartosz & Kapusta, Łukasz Jan, 2023. "The importance of individual spray properties in performance improvement of a urea-SCR system employing flash-boiling injection," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhishuang Li & Ziman Wang & Haoyang Mo & Han Wu, 2022. "Effect of the Air Flow on the Combustion Process and Preheating Effect of the Intake Manifold Burner," Energies, MDPI, vol. 15(9), pages 1-17, April.
    2. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    3. Wang, Ziman & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou & Xu, Hongming, 2017. "Experimental characterization of closely coupled split isooctane sprays under flash boiling conditions," Applied Energy, Elsevier, vol. 193(C), pages 199-209.
    4. de la Garza, Oscar A. & Martínez-Martínez, S. & Avulapati, Madan Mohan & Pos, Radboud & Megaritis, Thanos & Ganippa, Lionel, 2021. "Biofuels and its spray interactions under pilot-main injection strategy," Energy, Elsevier, vol. 219(C).
    5. Wang, Ziman & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou, 2017. "The influence of flash boiling conditions on spray characteristics with closely coupled split injection strategy," Applied Energy, Elsevier, vol. 187(C), pages 523-533.
    6. G.M. Hasan Shahariar & Ock Taeck Lim, 2018. "A Study on Urea-Water Solution Spray-Wall Impingement Process and Solid Deposit Formation in Urea-SCR de-NO x System," Energies, MDPI, vol. 12(1), pages 1-18, December.
    7. Wang, Ziman & Guo, Hengjie & Wang, Chongming & Xu, Hongming & Li, Yanfei, 2017. "Microscopic level study on the spray impingement process and characteristics," Applied Energy, Elsevier, vol. 197(C), pages 114-123.
    8. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    9. Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
    10. Liu, Fushui & Li, Zhishuang & Wang, Ziman & Dai, Xiaoyu & He, Xu & Lee, Chia-Fon, 2018. "Microscopic study on diesel spray under cavitating conditions by injecting fuel into water," Applied Energy, Elsevier, vol. 230(C), pages 1172-1181.
    11. Liao, Yujun & Dimopoulos Eggenschwiler, Panayotis & Rentsch, Daniel & Curto, Francesco & Boulouchos, Konstantinos, 2017. "Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems," Applied Energy, Elsevier, vol. 205(C), pages 964-975.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:180:y:2016:i:c:p:598-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.