Microscopic characterization of isooctane spray in the near field under flash boiling condition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.07.115
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with split injection," Applied Energy, Elsevier, vol. 163(C), pages 105-117.
- Wang, Ziman & Ding, Haichun & Ma, Xiao & Xu, Hongming & Wyszynski, Miroslaw L., 2016. "Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with single injection," Applied Energy, Elsevier, vol. 165(C), pages 335-344.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Qing & Gao, Ya & Chu, Miaoqi & Chen, Pice & Zhang, Qingteng & Wang, Jin, 2023. "Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection," Energy, Elsevier, vol. 265(C).
- Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
- Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Kaźmierski, Bartosz & Kapusta, Łukasz Jan, 2023. "The importance of individual spray properties in performance improvement of a urea-SCR system employing flash-boiling injection," Applied Energy, Elsevier, vol. 329(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhishuang Li & Ziman Wang & Haoyang Mo & Han Wu, 2022. "Effect of the Air Flow on the Combustion Process and Preheating Effect of the Intake Manifold Burner," Energies, MDPI, vol. 15(9), pages 1-17, April.
- Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
- Wang, Ziman & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou & Xu, Hongming, 2017. "Experimental characterization of closely coupled split isooctane sprays under flash boiling conditions," Applied Energy, Elsevier, vol. 193(C), pages 199-209.
- de la Garza, Oscar A. & Martínez-Martínez, S. & Avulapati, Madan Mohan & Pos, Radboud & Megaritis, Thanos & Ganippa, Lionel, 2021. "Biofuels and its spray interactions under pilot-main injection strategy," Energy, Elsevier, vol. 219(C).
- Wang, Ziman & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou, 2017. "The influence of flash boiling conditions on spray characteristics with closely coupled split injection strategy," Applied Energy, Elsevier, vol. 187(C), pages 523-533.
- G.M. Hasan Shahariar & Ock Taeck Lim, 2018. "A Study on Urea-Water Solution Spray-Wall Impingement Process and Solid Deposit Formation in Urea-SCR de-NO x System," Energies, MDPI, vol. 12(1), pages 1-18, December.
- Wang, Ziman & Guo, Hengjie & Wang, Chongming & Xu, Hongming & Li, Yanfei, 2017. "Microscopic level study on the spray impingement process and characteristics," Applied Energy, Elsevier, vol. 197(C), pages 114-123.
- Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
- Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
- Liu, Fushui & Li, Zhishuang & Wang, Ziman & Dai, Xiaoyu & He, Xu & Lee, Chia-Fon, 2018. "Microscopic study on diesel spray under cavitating conditions by injecting fuel into water," Applied Energy, Elsevier, vol. 230(C), pages 1172-1181.
- Liao, Yujun & Dimopoulos Eggenschwiler, Panayotis & Rentsch, Daniel & Curto, Francesco & Boulouchos, Konstantinos, 2017. "Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems," Applied Energy, Elsevier, vol. 205(C), pages 964-975.
More about this item
Keywords
Primary breakup; Flash boiling; Superheating; Spray; Near field;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:180:y:2016:i:c:p:598-606. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.