IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009525.html
   My bibliography  Save this article

Data-driven state estimation of integrated electric-gas energy system

Author

Listed:
  • Lan, Puzhe
  • Han, Dong
  • Xu, Xiaoyuan
  • Yan, Zheng
  • Ren, Xijun
  • Xia, Shiwei

Abstract

As the energy consumption in the world continues to increase, the integrated energy systems combined with multiple types of energy are gradually developing to enhance the utilization efficiency of each type of energy. However, some issues bring challenges to the state estimation of the coupled electric-gas integrated energy system. The issues include that measurement data of the integrated energy system has low redundancy, there exists a large measurement error of the integrated energy system, and the measurement devices of the electric and gas network are not standardized in terms of sampling time units. Considering that the data-driven model has high portability and the ability to distill and summarize information, the data-driven state estimation model of the electric-gas coupled integrated energy system is established in this paper. Bayesian learning is used to obtain the probabilistic statistical features of the measurement data. Super Latin sampling is applied to generate the complete measurement data. The rationality of the generated data is checked by the energy flow analysis of the integrated energy system to obtain the training sample set for the deep learning network. A hybrid deep learning network coupled with the convolutional neural network and long and short-term memory is proposed, and the root mean square error is utilized to train the hybrid deep learning network, which effectively improves the error accuracy of the state estimation of the electric-gas coupled integrated energy system. Compared with the classical model-driven method of state estimation, the arithmetic simulation verifies the effectiveness of the proposed method.

Suggested Citation

  • Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009525
    DOI: 10.1016/j.energy.2022.124049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    2. Hengrui Ma & Bo Wang & Wenzhong Gao & Dichen Liu & Yong Sun & Zhijun Liu, 2018. "Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation," Energies, MDPI, vol. 11(1), pages 1-19, January.
    3. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    5. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    6. Xiang, Liu, 2017. "Energy network dispatch optimization under emergency of local energy shortage with web tool for automatic large group decision-making," Energy, Elsevier, vol. 120(C), pages 740-750.
    7. N. I. Voropai & V. A. Stennikov & E. A. Barakhtenko, 2017. "Integrated energy systems: Challenges, trends, philosophy," Studies on Russian Economic Development, Springer, vol. 28(5), pages 492-499, September.
    8. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    9. Fu, Xueqian & Zhang, Xiurong, 2018. "Failure probability estimation of gas supply using the central moment method in an integrated energy system," Applied Energy, Elsevier, vol. 219(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    2. Wu, Di & Han, Zhonghe & Liu, Zhijian & Li, Peng & Ma, Fanfan & Zhang, Han & Yin, Yunxing & Yang, Xinyan, 2021. "Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system," Energy, Elsevier, vol. 217(C).
    3. Li, Yutong & Hou, Jian & Yan, Gangfeng, 2024. "Exploration-enhanced multi-agent reinforcement learning for distributed PV-ESS scheduling with incomplete data," Applied Energy, Elsevier, vol. 359(C).
    4. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    5. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    7. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    8. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    9. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    10. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    11. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    12. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    13. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    15. Wenting Zhang & Minxing Yue, 2021. "The application of building energy management system based on IoT technology in smart city," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 617-628, August.
    16. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    17. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    18. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    19. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    20. Mariia Kozlova & Alena Lohrmann, 2021. "Steering Renewable Energy Investments in Favor of Energy System Reliability: A Call for a Hybrid Model," Sustainability, MDPI, vol. 13(24), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.