Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2023.114222
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tang, Li-Hong & Bai, Yu-Long & Yang, Jie & Lu, Ya-Ni, 2020. "A hybrid prediction method based on empirical mode decomposition and multiple model fusion for chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
- Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
- Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
- Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
- Liu, Hongyi & Han, Hua & Sun, Yao & Shi, Guangze & Su, Mei & Liu, Zhangjie & Wang, Hongfei & Deng, Xiaofei, 2022. "Short-term wind power interval prediction method using VMD-RFG and Att-GRU," Energy, Elsevier, vol. 251(C).
- Sun, zexian & Zhao, mingyu & Dong, yan & Cao, xin & Sun, Hexu, 2021. "Hybrid model with secondary decomposition, randomforest algorithm, clustering analysis and long short memory network principal computing for short-term wind power forecasting on multiple scales," Energy, Elsevier, vol. 221(C).
- Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
- Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast," Renewable Energy, Elsevier, vol. 164(C), pages 1508-1526.
- Jiang, Zheyong & Che, Jinxing & He, Mingjun & Yuan, Fang, 2023. "A CGRU multi-step wind speed forecasting model based on multi-label specific XGBoost feature selection and secondary decomposition," Renewable Energy, Elsevier, vol. 203(C), pages 802-827.
- Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
- Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
- Hu, Shuai & Xiang, Yue & Zhang, Hongcai & Xie, Shanyi & Li, Jianhua & Gu, Chenghong & Sun, Wei & Liu, Junyong, 2021. "Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction," Applied Energy, Elsevier, vol. 293(C).
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
- Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
- Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
- Ai, Chunyu & He, Shan & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power prediction method based on OVMD-PE and improved multi-objective state transition algorithm," Energy, Elsevier, vol. 278(C).
- Fu, Wenlong & Fu, Yuchen & Li, Bailing & Zhang, Hairong & Zhang, Xuanrui & Liu, Jiarui, 2023. "A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 348(C).
- Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
- Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
- Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
- Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Dong, Yingchao & Zhang, Hongli & Wang, Cong & Zhou, Xiaojun, 2021. "A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting," Applied Energy, Elsevier, vol. 286(C).
- Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
- Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Yang, Yi & Xing, Qianyi & Wang, Kang & Li, Caihong & Wang, Jianzhou & Huang, Xiaojia, 2024. "A novel combined probabilistic load forecasting system integrating hybrid quantile regression and knee improved multi-objective optimization strategy," Applied Energy, Elsevier, vol. 356(C).
- Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
- Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
- Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
- Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
More about this item
Keywords
Interval prediction; Improved state transition algorithm; Optimal variational mode decomposition; Combined prediction model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.