IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics030626192400802x.html
   My bibliography  Save this article

Research on gas turbine health assessment method based on physical prior knowledge and spatial-temporal graph neural network

Author

Listed:
  • Cheng, Kanru
  • Zhang, Kunyu
  • Wang, Yuzhang
  • Yang, Chaoran
  • Li, Jiao
  • Wang, Yueheng

Abstract

Health management plays a significant role in preserving the reliability and safety of gas turbines. An accurate assessment of the health status of gas turbines is critical for the realization of predictive health management. However, existing health assessment methods do not take into account the physical relationships and spatial states within the system. The focus of this study is to establish a methodology that can concurrently utilize physical relationships and data for the quantitative assessment of gas turbine health. This study proposes a novel Physical Spatial-Temporal Graph Convolutional Network (Phy-STGCN) approach that combines prior physical knowledge with data-driven techniques by incorporating the structural and operational mechanisms of gas turbine into a graph-based model. First, the concept of gas turbine health is defined, followed by the validation of the rationality behind health classification. Second, a temporal graph construction method based on K-nearest neighbor and prior physical knowledge is introduced. Third, a network architecture based on graph neural networks is proposed to incorporate the temporal and spatial dependencies present in the data. The proposed method is validated using gas turbine data, achieving a health assessment accuracy of 90.8%. At the initial stages of health degradation, the assessment accuracy can exceed 98.9%. Through a series of comparative and ablation experiments, the efficacy of the Phy-STGCN method in gas turbine health assessment is further substantiated. These results demonstrate that the proposed method can effectively leverage prior physical knowledge and the spatial coupling information between data, realizing a quantitative mapping from multi-source monitorable data to system states. This study provides insights for research on health assessment methods that integrate physical and data-driven approaches.

Suggested Citation

  • Cheng, Kanru & Zhang, Kunyu & Wang, Yuzhang & Yang, Chaoran & Li, Jiao & Wang, Yueheng, 2024. "Research on gas turbine health assessment method based on physical prior knowledge and spatial-temporal graph neural network," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s030626192400802x
    DOI: 10.1016/j.apenergy.2024.123419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400802X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xi & Wang, Hui & Lu, Siliang & Xu, Jiawen & Yan, Ruqiang, 2023. "Remaining useful life prediction of turbofan engine using global health degradation representation in federated learning," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Li, Yasong & Zhou, Zheng & Sun, Chuang & Peng, Jun & Nandi, Asoke K. & Yan, Ruqiang, 2023. "Life-cycle modeling driven by coupling competition degradation for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    3. Wang, Yuzhang & Zhang, Qing & Li, Yixing & He, Ming & Weng, Shilie, 2022. "Research on the effectiveness of the key components in the HAT cycle," Applied Energy, Elsevier, vol. 306(PB).
    4. Yang, Xilian & Zhao, Qunfei & Wang, Yuzhang & Cheng, Kanru, 2023. "Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Runke & Yang, Cheng & Qi, Hanjie & Ma, Xiaoqian, 2023. "Synergetic performance of gas turbine combined cycle unit with inlet cooled by quasi-isobaric ACAES exhaust," Applied Energy, Elsevier, vol. 352(C).
    2. Yang, Xilian & Zhao, Qunfei & Wang, Yuzhang & Cheng, Kanru, 2023. "Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation," Energy, Elsevier, vol. 262(PA).
    3. Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Wu, Bin & Zhang, Xiaohong & Shi, Hui & Zeng, Jianchao, 2024. "Failure mode division and remaining useful life prognostics of multi-indicator systems with multi-fault," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Zhou, Zhihao & Zhang, Wei & Yao, Peng & Long, Zhenhua & Bai, Mingling & Liu, Jinfu & Yu, Daren, 2024. "More realistic degradation trend prediction for gas turbine based on factor analysis and multiple penalty mechanism loss function," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s030626192400802x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.