WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121121
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
- Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
- Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
- Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
- Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
- Li, Chaoshun & Xiao, Zhengguang & Xia, Xin & Zou, Wen & Zhang, Chu, 2018. "A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 131-144.
- Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
- Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
- Ghorashi, Amir Hossein & Maranlou, Hadi, 2021. "Essential infrastructures and relevant policies for renewable energy developments in oil-rich developing countries: Case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
- Ghorashi, Amir Hossein & Rahimi, Abdulrahim, 2011. "Renewable and non-renewable energy status in Iran: Art of know-how and technology-gaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 729-736, January.
- Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2020. "Negative correlation learning-based RELM ensemble model integrated with OVMD for multi-step ahead wind speed forecasting," Renewable Energy, Elsevier, vol. 156(C), pages 804-819.
- Wu, Chunying & Wang, Jianzhou & Chen, Xuejun & Du, Pei & Yang, Wendong, 2020. "A novel hybrid system based on multi-objective optimization for wind speed forecasting," Renewable Energy, Elsevier, vol. 146(C), pages 149-165.
- Çevik, Hasan Hüseyin & Çunkaş, Mehmet & Polat, Kemal, 2019. "A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Liu, Hui & Mi, Xiwei & Li, Yanfei & Duan, Zhu & Xu, Yinan, 2019. "Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression," Renewable Energy, Elsevier, vol. 143(C), pages 842-854.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
- Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
- Tian, Chaonan & Niu, Tong & Wei, Wei, 2022. "Developing a wind power forecasting system based on deep learning with attention mechanism," Energy, Elsevier, vol. 257(C).
- Konstantinos Konstas & Panos T. Chountalas & Eleni A. Didaskalou & Dimitrios A. Georgakellos, 2023. "A Pragmatic Framework for Data-Driven Decision-Making Process in the Energy Sector: Insights from a Wind Farm Case Study," Energies, MDPI, vol. 16(17), pages 1-26, August.
- Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Joseph, Lionel P. & Deo, Ravinesh C. & Prasad, Ramendra & Salcedo-Sanz, Sancho & Raj, Nawin & Soar, Jeffrey, 2023. "Near real-time wind speed forecast model with bidirectional LSTM networks," Renewable Energy, Elsevier, vol. 204(C), pages 39-58.
- Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
- Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
- Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
- Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
- Huang, Xiaojia & Wang, Chen & Zhang, Shenghui, 2024. "Research and application of a Model selection forecasting system for wind speed and theoretical power generation in wind farms based on classification and wind conversion," Energy, Elsevier, vol. 293(C).
- Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
- Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
- Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
- Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.
- Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
- Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
- Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
- Méndez-Gordillo, Alma Rosa & Campos-Amezcua, Rafael & Cadenas, Erasmo, 2022. "Wind speed forecasting using a hybrid model considering the turbulence of the airflow," Renewable Energy, Elsevier, vol. 196(C), pages 422-431.
- Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
- Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
- Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
- Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
- Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
More about this item
Keywords
Wind speed forecasting; Densely convolutional neural network; Channel attention module; Variational mode decomposition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013694. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.