IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222022514.html
   My bibliography  Save this article

Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production

Author

Listed:
  • Sun, Hao
  • Ma, Mingzhe
  • Fan, Mengmeng
  • Sun, Kang
  • Xu, Wei
  • Wang, Kui
  • Li, Baojun
  • Jiang, Jianchun

Abstract

Heterogeneous catalysts with excellent activity and stability are challenges for biodiesel production. Herein, two typical biomass derived mesoporous activated carbon (by chemical activation (CAC) and physical activation (PAC)) supported nano-CaO catalysts were prepared by regulated methods. By simple impregnation of calcium nitrate, the catalytic biodiesel yield over CaO/CAC was distinctly increased from 9.16% to 98.4% with the extreme elimination of phosphate groups in the carbon matrix. The catalytic activity of CaO/PAC was enhanced from 70.1% to 96.0% with a deposition-precipitation method for nano-CaO introduction. The abundant surface oxygenated groups of CAC could dispersively anchor the calcium species, leading to dispersion of stable nano-CaO (∼11.7 nm) in the mesopores, high basic sites concentration and excellent catalytic activity and stability. The developed mesopores with large diameter promote disperse growth of calcium oxide, diffusion rate and tolerance of bulky reaction molecules, and accessibility to the active sites, resulting in the improvement of catalytic performance. Both the phosphate groups elimination and deposition-precipitation technique effectively improved the surface area, mesopore volume, basic sites density and biodiesel yield of supported nano-CaO catalysts. The optimal CAC enhanced the catalytic activity 16-fold compared to pristine CaO, and CaO/CAC catalyst presented excellent reusability for transesterification without post-treatment.

Suggested Citation

  • Sun, Hao & Ma, Mingzhe & Fan, Mengmeng & Sun, Kang & Xu, Wei & Wang, Kui & Li, Baojun & Jiang, Jianchun, 2022. "Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022514
    DOI: 10.1016/j.energy.2022.125369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishnan, M. Gowthama & Rajkumar, Sundararajan, 2022. "Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol," Energy, Elsevier, vol. 252(C).
    2. Alptekin, Ertan, 2017. "Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine," Energy, Elsevier, vol. 119(C), pages 44-52.
    3. Lawan, Ibrahim & Garba, Zahraddeen N. & Zhou, Weiming & Zhang, Mingxin & Yuan, Zhanhui, 2020. "Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production," Renewable Energy, Elsevier, vol. 145(C), pages 2550-2560.
    4. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghasemi, Iman & Haghighi, Mohammad & Bekhradinassab, Ensie & Ebrahimi, Alireza, 2024. "Ultrasound-assisted dispersion of bifunctional CaO-ZrO2 nanocatalyst over acidified kaolin for production of biodiesel from waste cooking oil," Renewable Energy, Elsevier, vol. 225(C).
    2. Wang, Fu-Ping & Kang, Le-Le & Wang, Ya-Jun & Wang, Yu-Ran & Wang, Yi-Tong & Li, Jun-Guo & Jiang, Li-Qun & Ji, Rui & Chao, Shuai & Zhang, Jian-Bao & Fang, Zhen, 2024. "Magnetic biochar catalyst from reed straw and electric furnace dust for biodiesel production and life cycle assessment," Renewable Energy, Elsevier, vol. 227(C).
    3. Aghababaeian, Shiva & Beygzadeh, Mojtaba & Dehghan, Maziar & Halek, Farah-Sadat & Aminy, Mohammad, 2024. "Energy and economic aspects of efficient radiative heating for biodiesel production: Prospects and challenges of using solid magnetic CaO/CoFe2O4 nano-catalyst," Energy, Elsevier, vol. 289(C).
    4. Yang, Ning & Sheng, Xueru & Ti, Liting & Jia, Haiyuan & Ping, Qingwei & Li, Ning, 2023. "Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis," Energy, Elsevier, vol. 283(C).
    5. Che Zhao & Hongyuan Chen & Xiao Wu & Rui Shan, 2023. "Exploiting the Waste Biomass of Durian Shell as a Heterogeneous Catalyst for Biodiesel Production at Room Temperature," IJERPH, MDPI, vol. 20(3), pages 1-10, January.
    6. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    2. Knott, Josef & Mueller, Melanie & Pander, Joachim & Geist, Juergen, 2023. "Ecological assessment of the world's first shaft hydropower plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    5. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    7. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    8. Therasme, Obste & Volk, Timothy A. & Fortier, Marie-Odile & Kim, Youngwoon & Wood, Christopher D. & Ha, HakSoo & Ali, Atif & Brown, Tristan & Malmsheimer, Robert, 2022. "Carbon footprint of biofuels production from forest biomass using hot water extraction and biochemical conversion in the Northeast United States," Energy, Elsevier, vol. 241(C).
    9. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    10. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    11. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
    12. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    13. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    14. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    15. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    16. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    17. Ezzati, Rohollah & Ranjbar, Shahram & Soltanabadi, Azim, 2021. "Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 280-296.
    18. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    19. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    20. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.