IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025951.html
   My bibliography  Save this article

Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis

Author

Listed:
  • Yang, Ning
  • Sheng, Xueru
  • Ti, Liting
  • Jia, Haiyuan
  • Ping, Qingwei
  • Li, Ning

Abstract

Biodiesel can be produced efficiently by the ball-milling method, which is a sustainable energy and can be incorporated into the economic system. However, the impact of process variables on the biodiesel yield has not been studied. In this paper, RSM and parametric analysis were used to model and optimize the ball-milling process. The catalyst dosage is an important parameter factor affecting the biodiesel yield. Furthermore, life cycle assessments were conducted for both ball-milling and magnetic stirring method to determine their differences. The results show that the ball-milling method has better potential environmental impacts, especially for abiotic depletion (fossil fuels), which is 80% reduction less than the magnetic stirring method. SWOT analysis aids in creating strategic approaches to increase effectiveness and boost competitiveness. Ball-milling method is more sustainable and economical than magnetic stirring for biodiesel preparation.

Suggested Citation

  • Yang, Ning & Sheng, Xueru & Ti, Liting & Jia, Haiyuan & Ping, Qingwei & Li, Ning, 2023. "Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025951
    DOI: 10.1016/j.energy.2023.129201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asress, Mulugeta Biadgo & Simonovic, Aleksandar & Komarov, Dragan & Stupar, Slobodan, 2013. "Wind energy resource development in Ethiopia as an alternative energy future beyond the dominant hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 366-378.
    2. Sun, Hao & Ma, Mingzhe & Fan, Mengmeng & Sun, Kang & Xu, Wei & Wang, Kui & Li, Baojun & Jiang, Jianchun, 2022. "Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production," Energy, Elsevier, vol. 261(PB).
    3. Nayak, Milap G. & Vyas, Amish P., 2019. "Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology," Renewable Energy, Elsevier, vol. 138(C), pages 18-28.
    4. Li, Mantian & Chen, Jinyi & Huang, Youjie & Li, Meichen & Lin, Xiaocheng & Qiu, Ting, 2020. "Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids," Energy, Elsevier, vol. 211(C).
    5. Albuquerque, Allan Almeida & Ng, Flora T.T. & Danielski, Leandro & Stragevitch, Luiz, 2022. "Reactive separation processes applied to biodiesel production from residual oils and fats: Design, optimization and techno-economic assessment of routes using solid catalysts," Energy, Elsevier, vol. 240(C).
    6. Absi Halabi, M. & Al-Qattan, A. & Al-Otaibi, A., 2015. "Application of solar energy in the oil industry—Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 296-314.
    7. Dhawane, Sumit H. & Kumar, Tarkeshwar & Halder, Gopinath, 2016. "Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method," Renewable Energy, Elsevier, vol. 89(C), pages 506-514.
    8. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    9. Salvi, B.L. & Panwar, N.L., 2012. "Biodiesel resources and production technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3680-3689.
    10. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    11. Alemán-Nava, Gibrán S. & Casiano-Flores, Victor H. & Cárdenas-Chávez, Diana L. & Díaz-Chavez, Rocío & Scarlat, Nicolae & Mahlknecht, Jürgen & Dallemand, Jean-Francois & Parra, Roberto, 2014. "Renewable energy research progress in Mexico: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 140-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    2. Irwanto, M. & Gomesh, N. & Mamat, M.R. & Yusoff, Y.M., 2014. "Assessment of wind power generation potential in Perlis, Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 296-308.
    3. Aghababaeian, Shiva & Beygzadeh, Mojtaba & Dehghan, Maziar & Halek, Farah-Sadat & Aminy, Mohammad, 2024. "Energy and economic aspects of efficient radiative heating for biodiesel production: Prospects and challenges of using solid magnetic CaO/CoFe2O4 nano-catalyst," Energy, Elsevier, vol. 289(C).
    4. Carvalho, Ricardo L. & Lindgren, Robert & García-López, Natxo & Nyambane, Anne & Nyberg, Gert & Diaz-Chavez, Rocio & Boman, Christoffer, 2019. "Household air pollution mitigation with integrated biomass/cookstove strategies in Western Kenya," Energy Policy, Elsevier, vol. 131(C), pages 168-186.
    5. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    6. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    8. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    9. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    10. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    11. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    12. Jakub Żywiec & Dawid Szpak & Izabela Piegdoń & Krzysztof Boryczko & Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Janusz Rak, 2023. "An Approach to Assess the Water Resources Reliability and Its Management," Resources, MDPI, vol. 12(1), pages 1-14, January.
    13. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    14. Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
    15. Wang, Dandan & Li, Yusheng & Yang, Yongge & Hayase, Shuzi & Wu, Haifeng & Wang, Ruixiang & Ding, Chao & Shen, Qing, 2023. "How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation," Applied Energy, Elsevier, vol. 341(C).
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Luqman Razzaq & Shahid Imran & Zahid Anwar & Muhammad Farooq & Muhammad Mujtaba Abbas & Haris Mehmood Khan & Tahir Asif & Muhammad Amjad & Manzoore Elahi M. Soudagar & Nabeel Shaukat & I. M. Rizwanul , 2020. "Maximising Yield and Engine Efficiency Using Optimised Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 13(22), pages 1-16, November.
    18. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    20. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2018. "Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico," Energies, MDPI, vol. 11(5), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.