IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics0360544222015936.html
   My bibliography  Save this article

An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario

Author

Listed:
  • Cui, Wei
  • Cui, Naxin
  • Li, Tao
  • Cui, Zhongrui
  • Du, Yi
  • Zhang, Chenghui

Abstract

Nowadays, the comprehensive performance of plug-in hybrid electric vehicle (PHEV) is expected to be further improved with development of connected vehicle technology. However, the strong coupling and traffic flow uncertainty characteristics of connected scenario pose formidable challenge to existing energy management strategies (EMSs) in terms of optimization effect and computational efficiency. For comprehensively improving connected PHEV performances including energy saving, safety, traffic efficiency and computational efficiency, a multi-objective hierarchical EMS with less computational burden is proposed by incorporating resistance network (RN) triggered motion planning and alternating direction method of multipliers (ADMM) based convex torque optimization. Specifically, the RN method is employed to characterize and decouple the complex interaction relationship within connected scenario from internal mechanism perspective, enabling the velocity profile optimization issue that with fixed end time constraint and online correction mechanism for traffic flow uncertainty. According to the velocity profile optimized in cloud level, the convex formulation of model predictive control (MPC) based torque distribution problem is formulated in vehicle level, and an efficient ADMM algorithm is used for its solution, with the aim of satisfying energy saving and practical application requirements simultaneously. Based on real connected information, the superiorities of proposed EMS are verified by both simulation and hardware-in-loop (HIL) experiment.

Suggested Citation

  • Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222015936
    DOI: 10.1016/j.energy.2022.124690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Hongwen & Wang, Yunlong & Han, Ruoyan & Han, Mo & Bai, Yunfei & Liu, Qingwu, 2021. "An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications," Energy, Elsevier, vol. 225(C).
    2. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    3. Ganesh, Akhil Hannegudda & Xu, Bin, 2022. "A review of reinforcement learning based energy management systems for electrified powertrains: Progress, challenge, and potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    5. Zhang, Zhendong & He, Hongwen & Guo, Jinquan & Han, Ruoyan, 2020. "Velocity prediction and profile optimization based real-time energy management strategy for Plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 280(C).
    6. Li, Jie & Wu, Xiaodong & Xu, Min & Liu, Yonggang, 2022. "Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections," Energy, Elsevier, vol. 251(C).
    7. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    8. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2020. "Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion," Applied Energy, Elsevier, vol. 272(C).
    9. Min, Qingyun & Li, Junqiu & Liu, Bo & Li, Jianwei & Sun, Fengchun & Sun, Chao, 2021. "Guided model predictive control for connected vehicles with hybrid energy systems," Energy, Elsevier, vol. 230(C).
    10. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    11. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    12. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    13. Guo, Qiuyi & Zhao, Zhiguo & Shen, Peihong & Zhan, Xiaowen & Li, Jingwei, 2019. "Adaptive optimal control based on driving style recognition for plug-in hybrid electric vehicle," Energy, Elsevier, vol. 186(C).
    14. Kim, Youngki & Figueroa-Santos, Miriam & Prakash, Niket & Baek, Stanley & Siegel, Jason B. & Rizzo, Denise M., 2020. "Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    15. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    16. Li, Yapeng & Tang, Xiaolin & Lin, Xianke & Grzesiak, Lech & Hu, Xiaosong, 2022. "The role and application of convex modeling and optimization in electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Sánchez, Marcelino & Delprat, Sébastien & Hofman, Theo, 2020. "Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach," Applied Energy, Elsevier, vol. 260(C).
    18. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    19. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    20. Cheng, Shuo & Li, Liang & Chen, Xiang & Fang, Sheng-nan & Wang, Xiang-yu & Wu, Xiu-heng & Li, Wei-bing, 2020. "Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity," Applied Energy, Elsevier, vol. 268(C).
    21. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Wei & Cui, Naxin & Li, Tao & Du, Yi & Zhang, Chenghui, 2024. "Multi-objective hierarchical energy management for connected plug-in hybrid electric vehicle with cyber–physical interaction," Applied Energy, Elsevier, vol. 360(C).
    2. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    3. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    4. Wilberforce, Tabbi & Anser, Afaaq & Swamy, Jangam Aishwarya & Opoku, Richard, 2023. "An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles," Energy, Elsevier, vol. 279(C).
    5. Yang, Chao & Du, Xuelong & Wang, Weida & Yuan, Lijuan & Yang, Liuquan, 2024. "Variable optimization domain-based cooperative energy management strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 290(C).
    6. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
    7. Ma, Yan & Ma, Qian & Liu, Yongqin & Gao, Jinwu & Chen, Hong, 2024. "Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs," Applied Energy, Elsevier, vol. 361(C).
    8. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    9. Xue, Jiaqi & Jiao, Xiaohong & Yu, Danmei & Zhang, Yahui, 2023. "Predictive hierarchical eco-driving control involving speed planning and energy management for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    10. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    11. Du, Yi & Cui, Naxin & Cui, Wei & Li, Tao & Ren, Fei & Zhang, Chenghui, 2023. "AGRU and convex optimization based energy management for plug-in hybrid electric bus considering battery aging," Energy, Elsevier, vol. 277(C).
    12. Zhang, Yahui & Wei, Zeyi & Wang, Zhong & Tian, Yang & Wang, Jizhe & Tian, Zhikun & Xu, Fuguo & Jiao, Xiaohong & Li, Liang & Wen, Guilin, 2024. "Hierarchical eco-driving control strategy for connected automated fuel cell hybrid vehicles and scenario-/hardware-in-the loop validation," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    2. Cui, Wei & Cui, Naxin & Li, Tao & Du, Yi & Zhang, Chenghui, 2024. "Multi-objective hierarchical energy management for connected plug-in hybrid electric vehicle with cyber–physical interaction," Applied Energy, Elsevier, vol. 360(C).
    3. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2022. "Real-Time Energy Management Strategy Based on Driving Conditions Using a Feature Fusion Extreme Learning Machine," Energies, MDPI, vol. 15(12), pages 1-22, June.
    6. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    7. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    8. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    9. Ren, Xiaoxia & Ye, Jinze & Xie, Liping & Lin, Xinyou, 2024. "Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 286(C).
    10. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    11. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    12. Sun, Wenjing & Zou, Yuan & Zhang, Xudong & Guo, Ningyuan & Zhang, Bin & Du, Guodong, 2022. "High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning," Energy, Elsevier, vol. 258(C).
    13. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    14. Tang, Wenbin & Wang, Yaqian & Jiao, Xiaohong & Ren, Lina, 2023. "Hierarchical energy management strategy based on adaptive dynamic programming for hybrid electric vehicles in car-following scenarios," Energy, Elsevier, vol. 265(C).
    15. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).
    16. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    17. Abd-Elhaleem, Sameh & Shoeib, Walaa & Sobaih, Abdel Azim, 2023. "A new power management strategy for plug-in hybrid electric vehicles based on an intelligent controller integrated with CIGPSO algorithm," Energy, Elsevier, vol. 265(C).
    18. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    19. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    20. Zhang, Wei & Wang, Jixin & Xu, Zhenyu & Shen, Yuying & Gao, Guangzong, 2022. "A generalized energy management framework for hybrid construction vehicles via model-based reinforcement learning," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222015936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.