IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024520.html
   My bibliography  Save this article

Predictive hierarchical eco-driving control involving speed planning and energy management for connected plug-in hybrid electric vehicles

Author

Listed:
  • Xue, Jiaqi
  • Jiao, Xiaohong
  • Yu, Danmei
  • Zhang, Yahui

Abstract

The connected vehicle technique has offered great opportunities to improve further plug-in hybrid electric vehicles (PHEVs) fuel economy. In this context, a predictive hierarchical eco-driving control scheme is proposed for connected PHEVs under a car-following scenario containing a cloud-layer speed planner and vehicle-layer energy management. In the cloud layer, based on the traffic data separately processed by the dynamic programming (DP) algorithm and k-means clustering method, the reference state of charge (SOC) model, the energy consumption model, the equivalent factor model and the variable-horizon speed predictor can be constructed, respectively. And for ensuring safety, comfort and fuel economy in the car-following process, the energy and SOC models are used separately as the index and state equation in the data-driven speed planning problem. Then, with the driving pattern recognition technique, the power allocation under the planned speed can be conducted by integrating the adaptive equivalent consumption minimization strategy (ECMS) with the model predictive control (MPC), thus guaranteeing fuel economy, adaptability and near-global optimality with high computational efficiency. Compared with other strategies, the effectiveness and advantages of the proposed scheme are validated in the joint simulation platform of MATLAB/Simulink and GT-SUITE.

Suggested Citation

  • Xue, Jiaqi & Jiao, Xiaohong & Yu, Danmei & Zhang, Yahui, 2023. "Predictive hierarchical eco-driving control involving speed planning and energy management for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024520
    DOI: 10.1016/j.energy.2023.129058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Xinyou & Wu, Jiayun & Wei, Yimin, 2021. "An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC," Energy, Elsevier, vol. 234(C).
    2. Shi, Junzhe & Xu, Bin & Shen, Yimin & Wu, Jingbo, 2022. "Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition," Energy, Elsevier, vol. 243(C).
    3. Guo, Lingxiong & Zhang, Xudong & Zou, Yuan & Guo, Ningyuan & Li, Jianwei & Du, Guodong, 2021. "Cost-optimal energy management strategy for plug-in hybrid electric vehicles with variable horizon speed prediction and adaptive state-of-charge reference," Energy, Elsevier, vol. 232(C).
    4. Guo, Lingxiong & Liu, Hui & Han, Lijin & Yang, Ningkang & Liu, Rui & Xiang, Changle, 2023. "Predictive energy management strategy of dual-mode hybrid electric vehicles combining dynamic coordination control and simultaneous power distribution," Energy, Elsevier, vol. 263(PA).
    5. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    6. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    9. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    10. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    11. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yun & Zhang, Wenshan & Zhang, Shengrui & Pan, Yingjiu & Zhou, Bei & Jiao, Shuaiyang & Wang, Jianpo, 2024. "An improved eco-driving strategy for mixed platoons of autonomous and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    2. Tang, Zhenhao & Sui, Mengxuan & Wang, Xu & Xue, Wenyuan & Yang, Yuan & Wang, Zhi & Ouyang, Tinghui, 2024. "Theory-guided deep neural network for boiler 3-D NOx concentration distribution prediction," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Guo, Ningyuan & Zhang, Wencan & Li, Junqiu & Chen, Zheng & Li, Jianwei & Sun, Chao, 2024. "Predictive energy management of fuel cell plug-in hybrid electric vehicles: A co-state boundaries-oriented PMP optimization approach," Applied Energy, Elsevier, vol. 362(C).
    3. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
    4. Liu, Yonggang & Huang, Bin & Yang, Yang & Lei, Zhenzhen & Zhang, Yuanjian & Chen, Zheng, 2022. "Hierarchical speed planning and energy management for autonomous plug-in hybrid electric vehicle in vehicle-following environment," Energy, Elsevier, vol. 260(C).
    5. Ren, Xiaoxia & Ye, Jinze & Xie, Liping & Lin, Xinyou, 2024. "Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 286(C).
    6. Du, Yi & Cui, Naxin & Cui, Wei & Li, Tao & Ren, Fei & Zhang, Chenghui, 2023. "AGRU and convex optimization based energy management for plug-in hybrid electric bus considering battery aging," Energy, Elsevier, vol. 277(C).
    7. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    8. Sun, Wenjing & Zou, Yuan & Zhang, Xudong & Guo, Ningyuan & Zhang, Bin & Du, Guodong, 2022. "High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning," Energy, Elsevier, vol. 258(C).
    9. Wang, Shaohua & Zhang, Kaimei & Shi, Dehua & Li, Meng & Yin, Chunfang, 2024. "Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm," Energy, Elsevier, vol. 286(C).
    10. Wang, Weida & Guo, Xinghua & Yang, Chao & Zhang, Yuanbo & Zhao, Yulong & Huang, Denggao & Xiang, Changle, 2022. "A multi-objective optimization energy management strategy for power split HEV based on velocity prediction," Energy, Elsevier, vol. 238(PA).
    11. Guo, Lingxiong & Zhang, Xudong & Zou, Yuan & Han, Lijin & Du, Guodong & Guo, Ningyuan & Xiang, Changle, 2022. "Co-optimization strategy of unmanned hybrid electric tracked vehicle combining eco-driving and simultaneous energy management," Energy, Elsevier, vol. 246(C).
    12. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    13. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    14. Qi, Chunyang & Song, Chuanxue & Xiao, Feng & Song, Shixin, 2022. "Generalization ability of hybrid electric vehicle energy management strategy based on reinforcement learning method," Energy, Elsevier, vol. 250(C).
    15. Songlin Yang & Jingan Feng & Bao Song, 2021. "Research on Decoupled Optimal Control of Straight-Line Driving Stability of Electric Vehicles Driven by Four-Wheel Hub Motors," Energies, MDPI, vol. 14(18), pages 1-25, September.
    16. Yang, Chao & Du, Xuelong & Wang, Weida & Yuan, Lijuan & Yang, Liuquan, 2024. "Variable optimization domain-based cooperative energy management strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 290(C).
    17. Sun, Xilei & Fu, Jianqin & Yang, Huiyong & Xie, Mingke & Liu, Jingping, 2023. "An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control," Energy, Elsevier, vol. 269(C).
    18. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
    20. Wilberforce, Tabbi & Anser, Afaaq & Swamy, Jangam Aishwarya & Opoku, Richard, 2023. "An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles," Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.