IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920305407.html
   My bibliography  Save this article

Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health

Author

Listed:
  • Xie, Shaobo
  • Qi, Shanwei
  • Lang, Kun
  • Tang, Xiaolin
  • Lin, Xianke

Abstract

For plug-in hybrid electric vehicles, deeper battery discharge provides more electrical energy at a lower cost than fossil fuel, which reduces the overall energy consumption cost. However, it also accelerates battery degradation and increases the equivalent cost of battery life loss. Therefore, the battery depth of discharge (DOD) needs to be optimized to minimize the overall cost. For connected plug-in hybrid electric vehicles, the longitudinal velocity planning determines the energy demands, which directly affects the charging or discharging current to the battery and therefore affects DOD, aging, and fuel consumption as well. For connected plug-in hybrid electric buses running on fixed routes, in order to coordinate the velocity planning and battery health protection, this paper proposes a real-time energy management strategy aimed at achieving the minimum overall cost by optimizing the DOD and velocity planning. The proposed method is evaluated in an urban traffic scenario, and the goal of achieving optimal DOD is divided into a co-optimization problem over each moving horizon, where the velocity planning and energy management are traded off by minimizing the sum of driving safety cost, energy consumption cost, and equivalent cost of battery life loss. The results show that the proposed far-sighted economy-oriented methodology is superior to a short-sighted velocity planning and energy management method, and has an obvious advantage in the total cost compared with other conventional methods using a preset DOD. Moreover, the impacts of possible communication delays and prediction horizon lengths on the optimization performance and computational cost are investigated. The proposed method provides a promising management strategy for future connected and autonomous mobility design, which can mitigate battery capacity degradation and improve the fuel economy.

Suggested Citation

  • Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920305407
    DOI: 10.1016/j.apenergy.2020.115028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920305407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    2. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    3. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Tang, Xiaolin & Lang, Kun & Xin, Zongke & Brighton, James, 2019. "Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge," Energy, Elsevier, vol. 173(C), pages 667-678.
    4. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    5. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virginia Casella & Daniel Fernandez Valderrama & Giulio Ferro & Riccardo Minciardi & Massimo Paolucci & Luca Parodi & Michela Robba, 2022. "Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management," Energies, MDPI, vol. 15(11), pages 1-23, May.
    2. Serrano, José Ramón & García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago, 2021. "High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions," Applied Energy, Elsevier, vol. 282(PA).
    3. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    4. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    5. Zhang, Hailong & Peng, Jiankun & Dong, Hanxuan & Tan, Huachun & Ding, Fan, 2023. "Hierarchical reinforcement learning based energy management strategy of plug-in hybrid electric vehicle for ecological car-following process," Applied Energy, Elsevier, vol. 333(C).
    6. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    7. Anselma, Pier Giuseppe & Kollmeyer, Phillip & Lempert, Jeremy & Zhao, Ziyu & Belingardi, Giovanni & Emadi, Ali, 2021. "Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation," Applied Energy, Elsevier, vol. 285(C).
    8. Fan, Likang & Wang, Jun & Peng, Yiqiang & Sun, Hongwei & Bao, Xiuchao & Zeng, Baoquan & Wei, Hongqian, 2024. "Real-time energy management strategy with dynamically updating equivalence factor for through-the-road (TTR) hybrid vehicles," Energy, Elsevier, vol. 298(C).
    9. Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).
    10. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    11. Liu, Huimin & Lin, Cheng & Yu, Xiao & Tao, Zhenyi & Xu, Jiaqi, 2024. "Variable horizon multivariate driving pattern recognition framework based on vehicle-road two-dimensional information for electric vehicle," Applied Energy, Elsevier, vol. 365(C).
    12. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
    13. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    14. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Lin Li & Serdar Coskun & Jiaze Wang & Youming Fan & Fengqi Zhang & Reza Langari, 2021. "Velocity Prediction Based on Vehicle Lateral Risk Assessment and Traffic Flow: A Brief Review and Application Examples," Energies, MDPI, vol. 14(12), pages 1-30, June.
    16. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobo Sun & Weirong Liu & Mengfei Wen & Yue Wu & Heng Li & Jiahao Huang & Chao Hu & Zhiwu Huang, 2021. "A Real-Time Optimal Car-Following Power Management Strategy for Hybrid Electric Vehicles with ACC Systems," Energies, MDPI, vol. 14(12), pages 1-17, June.
    2. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    3. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    4. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    5. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    6. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    7. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    8. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    9. Wu, Yitao & Zhang, Yuanjian & Li, Guang & Shen, Jiangwei & Chen, Zheng & Liu, Yonggang, 2020. "A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks," Energy, Elsevier, vol. 208(C).
    10. Shaobo, Xie & Qiankun, Zhang & Xiaosong, Hu & Yonggang, Liu & Xianke, Lin, 2021. "Battery sizing for plug-in hybrid electric buses considering variable route lengths," Energy, Elsevier, vol. 226(C).
    11. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Tang, Xiaolin & Lang, Kun & Xin, Zongke & Brighton, James, 2019. "Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge," Energy, Elsevier, vol. 173(C), pages 667-678.
    13. Hu, Xiaosong & Zhang, Xiaoqian & Tang, Xiaolin & Lin, Xianke, 2020. "Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios," Energy, Elsevier, vol. 196(C).
    14. Yuan, Jingni & Yang, Lin, 2019. "Predictive energy management strategy for connected 48V hybrid electric vehicles," Energy, Elsevier, vol. 187(C).
    15. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    16. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    17. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    18. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    19. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    20. Wen, Yifan & Zhang, Shaojun & Zhang, Jingran & Bao, Shuanghui & Wu, Xiaomeng & Yang, Daoyuan & Wu, Ye, 2020. "Mapping dynamic road emissions for a megacity by using open-access traffic congestion index data," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920305407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.