IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics036054422302738x.html
   My bibliography  Save this article

Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle

Author

Listed:
  • Ren, Xiaoxia
  • Ye, Jinze
  • Xie, Liping
  • Lin, Xinyou

Abstract

Energy management strategies play an essential role in improving fuel economy and extending battery lifetime for fuel cell hybrid electric vehicles. However, the traditional energy management strategy ignores the lifetime of the battery for good fuel economy. To overcome this drawback, a battery longevity-conscious energy management predictive control strategy is proposed based on the deep reinforcement learning algorithm predictive equivalent consumption minimization strategy (DRL-PECMS) in this study. To begin with, the back-propagation neural network is devised for predicting demand power, and the predictive equivalent consumption minimum strategy (PECMS) is proposed to improve the hydrogen consumption. Then, in order to improve the battery durability performance, the deep reinforcement learning algorithm is utilized to optimize the battery power and improve battery lifetime. Finally, numerical verification and hard-ware in the loop experiments are conducted to validate hydrogen consumption and battery durability performance of the proposed strategy. The validation results show that, compared with CD/CS and SQP(Sequential Quadratic Programming), the PECMS combined can achieve better fuel economy with the fuel consumption reduction by 55.6 % and 5.27 %, which effectively improves the fuel economy. The DRL-PECMS can reduce the effective Ah-throughput by 3.1 % compared with the PECMS. The numerous validations and comparisons demonstrate that the proposed strategy effectively accomplishes the trade-off optimization between energy consumption and battery durability performance.

Suggested Citation

  • Ren, Xiaoxia & Ye, Jinze & Xie, Liping & Lin, Xinyou, 2024. "Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302738x
    DOI: 10.1016/j.energy.2023.129344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302738X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Xiaodong & Wang, Jiaqi & Sun, Chao & Liu, Bo & Huo, Weiwei & Sun, Fengchun, 2023. "Guided control for plug-in fuel cell hybrid electric vehicles via vehicle to traffic communication," Energy, Elsevier, vol. 267(C).
    2. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    3. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Mehdi Sellali & Alexandre Ravey & Achour Betka & Abdellah Kouzou & Mohamed Benbouzid & Abdesslem Djerdir & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 15(4), pages 1-17, February.
    5. Li, Tianyu & Liu, Huiying & Ding, Daolin, 2018. "Predictive energy management of fuel cell supercapacitor hybrid construction equipment," Energy, Elsevier, vol. 149(C), pages 718-729.
    6. Lin, Xinyou & Xu, Xinhao & Wang, Zhaorui, 2022. "Deep Q-learning network based trip pattern adaptive battery longevity-conscious strategy of plug-in fuel cell hybrid electric vehicle," Applied Energy, Elsevier, vol. 321(C).
    7. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    8. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    9. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    10. Tang, Xiaolin & Zhou, Haitao & Wang, Feng & Wang, Weida & Lin, Xianke, 2022. "Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning," Energy, Elsevier, vol. 238(PA).
    11. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    12. Guo, Lingxiong & Liu, Hui & Han, Lijin & Yang, Ningkang & Liu, Rui & Xiang, Changle, 2023. "Predictive energy management strategy of dual-mode hybrid electric vehicles combining dynamic coordination control and simultaneous power distribution," Energy, Elsevier, vol. 263(PA).
    13. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    14. Wang, Hao & He, Hongwen & Bai, Yunfei & Yue, Hongwei, 2022. "Parameterized deep Q-network based energy management with balanced energy economy and battery life for hybrid electric vehicles," Applied Energy, Elsevier, vol. 320(C).
    15. Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
    16. Tian, Yang & Zhang, Yahui & Li, Hongmin & Gao, Jinwu & Swen, Austin & Wen, Guilin, 2023. "Optimal sizing and energy management of a novel dual-motor powertrain for electric vehicles," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    2. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    3. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    4. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    5. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    6. Xue, Jiaqi & Jiao, Xiaohong & Yu, Danmei & Zhang, Yahui, 2023. "Predictive hierarchical eco-driving control involving speed planning and energy management for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    7. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    8. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Zhang, Wei & Wang, Jixin & Xu, Zhenyu & Shen, Yuying & Gao, Guangzong, 2022. "A generalized energy management framework for hybrid construction vehicles via model-based reinforcement learning," Energy, Elsevier, vol. 260(C).
    10. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    11. Guo, Ningyuan & Zhang, Wencan & Li, Junqiu & Chen, Zheng & Li, Jianwei & Sun, Chao, 2024. "Predictive energy management of fuel cell plug-in hybrid electric vehicles: A co-state boundaries-oriented PMP optimization approach," Applied Energy, Elsevier, vol. 362(C).
    12. Enyong Xu & Mengcheng Ma & Weiguang Zheng & Qibai Huang, 2023. "An Energy Management Strategy for Fuel-Cell Hybrid Commercial Vehicles Based on Adaptive Model Prediction," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    13. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    14. Zhang, Yuanjian & Chu, Liang & Fu, Zicheng & Xu, Nan & Guo, Chong & Zhao, Di & Ou, Yang & Xu, Lei, 2020. "Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control," Energy, Elsevier, vol. 197(C).
    15. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    16. Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
    17. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    18. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
    19. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Liu, Huimin & Lin, Cheng & Yu, Xiao & Tao, Zhenyi & Xu, Jiaqi, 2024. "Variable horizon multivariate driving pattern recognition framework based on vehicle-road two-dimensional information for electric vehicle," Applied Energy, Elsevier, vol. 365(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302738x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.