IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919318367.html
   My bibliography  Save this article

Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach

Author

Listed:
  • Sánchez, Marcelino
  • Delprat, Sébastien
  • Hofman, Theo

Abstract

When designing hybrid vehicles, the energy management is formulated as an optimal control problem. The Pontryagin’s minimum principle represents a powerful methodology capable of solving the energy management offline. Moreover, the Pontryagin’s minimum principle has been proved useful in the derivation of online energy management algorithms, such as the equivalent consumption minimization strategy. Nevertheless, difficulties on the application of the Pontryagin’s minimum principle arise when state constraints are included in the definition of the problem. A possible solution is to combine the Pontryagin’s minimum principle with a penalty function approach. This is done by adding functions to the Hamiltonian, which increase the value of the Hamiltonian whenever the optimal trajectory violates its constraints. However, the addition of penalty functions to the Hamiltonian makes it harder to compute its minimum. This work proposes an effective penalty approach through an implicit Hamiltonian minimization. The proposed method is applied to solve the energy management for a hybrid electric vehicle modeled as a mixed input-state constrained optimal control problem with two states: the battery temperature and state-of-energy. It is demonstrated to be up to 46 times faster than the dynamic programming method while taking benefits of state-of-the-art boundary value problem solvers and avoiding any issue related to state quantization.

Suggested Citation

  • Sánchez, Marcelino & Delprat, Sébastien & Hofman, Theo, 2020. "Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919318367
    DOI: 10.1016/j.apenergy.2019.114149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    2. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    3. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    4. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).
    5. Chen, Zheng & Xia, Bing & You, Chenwen & Mi, Chunting Chris, 2015. "A novel energy management method for series plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 172-179.
    6. Yang, Yalian & Hu, Xiaosong & Pei, Huanxin & Peng, Zhiyuan, 2016. "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, Elsevier, vol. 168(C), pages 683-690.
    7. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    2. Zhang, Bo & Zhang, Jiangyan & Xu, Fuguo & Shen, Tielong, 2020. "Optimal control of power-split hybrid electric powertrains with minimization of energy consumption," Applied Energy, Elsevier, vol. 266(C).
    3. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    4. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    5. Vincenzo De Bellis & Enrica Malfi & Jean-Marc Zaccardi, 2021. "Development of an Efficient Thermal Electric Skipping Strategy for the Management of a Series/Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2022. "Real-Time Energy Management Strategy Based on Driving Conditions Using a Feature Fusion Extreme Learning Machine," Energies, MDPI, vol. 15(12), pages 1-22, June.
    7. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    8. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    9. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    10. Duhr, Pol & Christodoulou, Grigorios & Balerna, Camillo & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher H., 2021. "Time-optimal gearshift and energy management strategies for a hybrid electric race car," Applied Energy, Elsevier, vol. 282(PA).
    11. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2022. "Energy saving analysis in electrified powertrain using look-ahead energy management scheme," Applied Energy, Elsevier, vol. 325(C).
    12. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    2. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    3. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    4. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    5. Xu, Nan & Kong, Yan & Zhang, Yuanjian & Yue, Fenglai & Sui, Yan & Li, Xiaohan & Liu, Heng & Xu, Zhe, 2022. "Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy," Energy, Elsevier, vol. 251(C).
    6. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    7. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    8. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    9. Hou, Daizheng & Sun, Qun & Bao, Chunjiang & Cheng, Xingqun & Guo, Hongqiang & Zhao, Ying, 2019. "An all-in-one design method for plug-in hybrid electric buses considering uncertain factor of driving cycles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    11. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    12. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    13. Li, Junqiu & Wang, Yihe & Chen, Jianwen & Zhang, Xiaopeng, 2017. "Study on energy management strategy and dynamic modeling for auxiliary power units in range-extended electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 363-375.
    14. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    15. Yong Liu & Jimin Ni & Rong Huang & Xiuyong Shi & Zheng Xu & Yanjun Wang & Yuan Lu, 2024. "Optimization of Energy Management Strategy of a PHEV Based on Improved PSO Algorithm and Energy Flow Analysis," Sustainability, MDPI, vol. 16(20), pages 1-27, October.
    16. Li, Yapeng & Tang, Xiaolin & Lin, Xianke & Grzesiak, Lech & Hu, Xiaosong, 2022. "The role and application of convex modeling and optimization in electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    18. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    19. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919318367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.