IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920305420.html
   My bibliography  Save this article

Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity

Author

Listed:
  • Cheng, Shuo
  • Li, Liang
  • Chen, Xiang
  • Fang, Sheng-nan
  • Wang, Xiang-yu
  • Wu, Xiu-heng
  • Li, Wei-bing

Abstract

Autonomous driving hybrid electric vehicles can offer unprecedented opportunities for autonomous safe & energy-efficient driving. However, how to integrate energy optimization during the car-following process and vehicle safety under complex traffic flow is a formidable challenge. Moreover, the coordinated control of three chassis parts including electric motor, internal combustion engine and vehicle brake system is hard to be tackled. Therefore, this paper aims to address longitudinal autonomous driving for intelligent hybrid electric vehicles. A game-theory-based longitudinal autonomous driving control framework is proposed with much easier access to information due to vehicle-to-vehicle/vehicle-to-infrastructure communication, which is our main contribution. Firstly, the whole longitudinal driving control is transformed into a multi-objective optimal problem, which contains safety, economy, comfort, so a game theory model is built to solve the multi-objective equilibrium problem. Then, to obtain the closed-loop strategies in Nash differential game, a system of coupled algebraic Riccati equations is solved. Finally, the game-theory-based control strategies coordinate electric motor, internal combustion engine and vehicle brake system to achieve multi-objective equilibrium. Simulation tests of the proposed framework and previous existing work are carried out, and their results show the proposed framework’s better performance of longitudinal dynamics control including car-following, reducing fuel consumption, and driving comfort.

Suggested Citation

  • Cheng, Shuo & Li, Liang & Chen, Xiang & Fang, Sheng-nan & Wang, Xiang-yu & Wu, Xiu-heng & Li, Wei-bing, 2020. "Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920305420
    DOI: 10.1016/j.apenergy.2020.115030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920305420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    2. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    3. Fábio Duarte & Carlo Ratti, 2018. "The Impact of Autonomous Vehicles on Cities: A Review," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(4), pages 3-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Fumi & Utsumi, Shinobu & Tanimoto, Jun, 2022. "Underlying social dilemmas in mixed traffic flow with lane changes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
    3. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    4. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    5. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    6. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Yan, Qi & Xiang, Changle, 2023. "Multiobjective optimization of longitudinal dynamics and energy management for HEVs based on nash bargaining game," Energy, Elsevier, vol. 262(PA).
    7. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    8. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hui & Li, Xunming & Wang, Weida & Han, Lijin & Xiang, Changle, 2018. "Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 427-444.
    2. Wang, Hong & Huang, Yanjun & Khajepour, Amir & Song, Qiang, 2016. "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 182(C), pages 105-114.
    3. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    5. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    6. Tian, He & Lu, Ziwang & Wang, Xu & Zhang, Xinlong & Huang, Yong & Tian, Guangyu, 2016. "A length ratio based neural network energy management strategy for online control of plug-in hybrid electric city bus," Applied Energy, Elsevier, vol. 177(C), pages 71-80.
    7. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Verbelen, Florian & Lhomme, Walter & Vinot, Emmanuel & Stuyts, Jeroen & Vafaeipour, Majid & Hegazy, Omar & Stockman, Kurt & Sergeant, Peter, 2020. "Comparison of an optimized electrical variable transmission with the Toyota Hybrid System," Applied Energy, Elsevier, vol. 278(C).
    9. Yang, Chao & Du, Siyu & Li, Liang & You, Sixong & Yang, Yiyong & Zhao, Yue, 2017. "Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 203(C), pages 883-896.
    10. Yang, Yalian & Hu, Xiaosong & Pei, Huanxin & Peng, Zhiyuan, 2016. "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, Elsevier, vol. 168(C), pages 683-690.
    11. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    12. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    13. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    14. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    15. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    16. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    17. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    18. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    19. Hans Westerman & John Black, 2024. "Preparing for Fully Autonomous Vehicles in Australian Cities: Land-Use Planning—Adapting, Transforming, and Innovating," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
    20. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920305420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.