IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011446.html
   My bibliography  Save this article

Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine

Author

Listed:
  • Yuan, Chenheng
  • He, Lei
  • Zhou, Lifu

Abstract

Free piston linear engine (FPLE) is a new potential alternative to conventional engine, and the mechanical spring of the engine is a key energy storage device to maintain reciprocating operation and then affect combustion and thermodynamic. This article presents a study to reveal the effect of spring dynamics on the combustion performances of a linear diesel engine. A system model which couples spring dynamic model and multi-dimensional combustion model is proposed to discuss the variable spring stiffness effect on the combustion and heat release characteristics of the FPLE. The results indicate that the spring stiffness gives a positive excitation on the reciprocating frequency and engine compression ratio, although it brings about low fuel-air mixture uniformity for combustion reaction. Moreover, the great spring stiffness leads to high combustion pressure and fast combustion process due to its large compression ratio. The results suggest that properly increasing the spring stiffness is beneficial to increase the thermal efficiency of the engine, but too high spring stiffness will also result in higher NO emission and soot generation.

Suggested Citation

  • Yuan, Chenheng & He, Lei & Zhou, Lifu, 2022. "Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011446
    DOI: 10.1016/j.energy.2022.124241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qian & Wu, Fan & Zhao, Yan & Bai, Jin & Huang, Rong, 2019. "Study on combustion characteristics and ignition limits extending of micro free-piston engines," Energy, Elsevier, vol. 179(C), pages 805-814.
    2. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    3. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
    4. Zhou, Yingcong & Sofianopoulos, Aimilios & Gainey, Brian & Lawler, Benjamin & Mamalis, Sotirios, 2019. "A system-level numerical study of a homogeneous charge compression ignition spring-assisted free piston linear alternator with various piston motion profiles," Applied Energy, Elsevier, vol. 239(C), pages 820-835.
    5. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoma Irie & Mitsuhide Sato & Tsutomu Mizuno & Fumiya Nishimura & Kaname Naganuma, 2022. "Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator," Energies, MDPI, vol. 15(20), pages 1-17, October.
    2. Chendong Guo & Yahui Wang & Liang Tong & Huihua Feng & Zhengxing Zuo & Boru Jia, 2023. "Research on Piston Dynamics and Engine Performances of a Free-Piston Engine Linear Generator Coupling with Various Rebound Devices," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    2. Chen, Leiming & Xu, Zhaoping & Liu, Shuangshuang & Liu, Liang, 2022. "Dynamic modeling of a free-piston engine based on combustion parameters prediction," Energy, Elsevier, vol. 249(C).
    3. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    4. Tian, Yaming & Zhang, Hongguang & Li, Jian & Hou, Xiaochen & Zhao, Tenglong & Yang, Fubin & Xu, Yonghong & Wang, Xin, 2018. "Development and validation of a single-piston free piston expander-linear generator for a small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 809-820.
    5. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    6. Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
    7. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    8. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
    9. Geng, Heming & Wang, Yang & Zhen, Xudong & Liu, Yu & Li, Zhiyong, 2018. "Study on adaptive behavior and mechanism of compression ratio (or piston motion profile) for combustion parameters in hydraulic free piston engine," Applied Energy, Elsevier, vol. 211(C), pages 921-928.
    10. Yuan, Chenheng & Lu, Jiangchuan & Li, Shilei, 2023. "Thermoelectric coupling effect of secondary injection on gasoline fuel spray and mixing of a free vibration combustion alternator," Energy, Elsevier, vol. 281(C).
    11. Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
    12. Pinyi Su & Muhammad Imran & Muhammad Nadeem & Shamsheer ul Haq, 2023. "The Role of Environmental Law in Farmers’ Environment-Protecting Intentions and Behavior Based on Their Legal Cognition: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    13. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    14. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    15. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    16. Gainey, Brian & Lawler, Benjamin, 2021. "A fuel cell free piston gas turbine hybrid architecture for high-efficiency, load-flexible power generation," Applied Energy, Elsevier, vol. 283(C).
    17. Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
    18. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    19. Dan-Adrian Mocanu & Viorel Bădescu & Ciprian Bucur & Iuliana Ștefan & Elena Carcadea & Maria Simona Răboacă & Ioana Manta, 2020. "PLC Automation and Control Strategy in a Stirling Solar Power System," Energies, MDPI, vol. 13(8), pages 1-19, April.
    20. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.