IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019030.html
   My bibliography  Save this article

Investigation on the oscillation characteristics and performance prediction of a linear range extender: An analytical and numerical combined method

Author

Listed:
  • Zhang, Zhiyuan
  • Wang, Jiayu
  • Xu, Lei
  • Feng, Huihua
  • Jia, Boru
  • He, Hongwen

Abstract

Linear range extender (LRE) system is directly coupled with free piston engine and linear motor and has great application potential in extended-range electric vehicles. In this paper, an analytical and numerical combined method was adopted to investigate the effect of key design parameters on the design and performance prediction of an LRE system. The results showed that the energy input and consumption reach a balance state, the LRE system maintains a stable steady vibration. Increasing the system load will reduce the piston operating stroke. The peak operating velocity of the piston, the average operating velocity of the piston gradually decrease, the operating frequency and the output power decreases as the load increases. When S/B is 0.8, the system output power reaches 4.5 kW, and when S/B is 1.2, the output power is only 2.2 kW. When the mover mass is 3.0 kg, the system output power reaches 3.8 kW, and when the mover mass is 8.0 kg, the output power is only 2.4 kW. When the excess air ratio increases from 0.8 to 1.2, the peak piston speed was reduced from 6.79 m/s to 6.03 m/s, the average piston operating speed was reduced from 5.30 m/s to 4.96 m/s, and the system operating frequency was reduced from 51.2 Hz to 47.96 Hz. If the LRE system wants to have stronger resistance to load fluctuations, it should choose a larger S/B ratio and a relatively larger mover mass during design. In order to pursue higher power output, the S/B and mover mass must be relatively small.

Suggested Citation

  • Zhang, Zhiyuan & Wang, Jiayu & Xu, Lei & Feng, Huihua & Jia, Boru & He, Hongwen, 2024. "Investigation on the oscillation characteristics and performance prediction of a linear range extender: An analytical and numerical combined method," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019030
    DOI: 10.1016/j.energy.2024.132129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.