IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp805-814.html
   My bibliography  Save this article

Study on combustion characteristics and ignition limits extending of micro free-piston engines

Author

Listed:
  • Wang, Qian
  • Wu, Fan
  • Zhao, Yan
  • Bai, Jin
  • Huang, Rong

Abstract

To solve problems of ignition and combustion based micro free-piston engines, the combustion characteristics and extension of the ignition limits of the micro free-piston engine were investigated. A single-shot visualized experiment was conducted for a micro free-piston engine with a combustion chamber diameter of 3 mm. The results reveal the micro free-piston engine performance concerning combustion pressure, temperature, power density, mass loss etc., especially three ignition types for micro free-piston engine with a mixture gas of methane and air under different compression ratios. Methods for extending ignition limits of mixture gas preheating, catalyzing and hydrogen addition were investigated by numerical simulation. The results reveal that the ignition time of mixture gas could be advanced, and the maximum pressure and temperature declined down in the micro-combustion chamber under certain conditions; also the flammability limits can be extended to improve the combustion stability for micro free-piston engine.

Suggested Citation

  • Wang, Qian & Wu, Fan & Zhao, Yan & Bai, Jin & Huang, Rong, 2019. "Study on combustion characteristics and ignition limits extending of micro free-piston engines," Energy, Elsevier, vol. 179(C), pages 805-814.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:805-814
    DOI: 10.1016/j.energy.2019.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Formosa, Fabien & Fréchette, Luc G., 2013. "Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization," Energy, Elsevier, vol. 57(C), pages 796-808.
    2. Zongping Shao & Sossina M. Haile & Jeongmin Ahn & Paul D. Ronney & Zhongliang Zhan & Scott A. Barnett, 2005. "A thermally self-sustained micro solid-oxide fuel-cell stack with high power density," Nature, Nature, vol. 435(7043), pages 795-798, June.
    3. Zhang, Chen & Li, Ke & Sun, Zongxuan, 2015. "Modeling of piston trajectory-based HCCI combustion enabled by a free piston engine," Applied Energy, Elsevier, vol. 139(C), pages 313-326.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinglin Zhang & Zhaoping Xu & Shuangshuang Liu & Liang Liu, 2020. "Effects of Injector Spray Angle on Performance of an Opposed-Piston Free-Piston Engine," Energies, MDPI, vol. 13(14), pages 1-17, July.
    2. Wenhua Yuan & Xueliang Huang & Jun Fu & Yi Ma & Guangming Li & Qike Huang, 2022. "Water Vapor Blending Ratio Effects on Combustion Thermal Performance and Emission of Hydrogen Homogeneous Charge Compression Ignition," Energies, MDPI, vol. 15(23), pages 1-16, November.
    3. Yuan, Chenheng & He, Lei & Zhou, Lifu, 2022. "Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayodeji Sowale & Edward J. Anthony & Athanasios John Kolios, 2018. "Optimisation of a Quasi-Steady Model of a Free-Piston Stirling Engine," Energies, MDPI, vol. 12(1), pages 1-17, December.
    2. Ayodeji Sowale & Athanasios J. Kolios, 2018. "Thermodynamic Performance of Heat Exchangers in a Free Piston Stirling Engine," Energies, MDPI, vol. 11(3), pages 1-20, February.
    3. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    4. Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    5. Fukang Ma & Shuanlu Zhang & Zhenfeng Zhao & Yifang Wang, 2021. "Research on the Operating Characteristics of Hydraulic Free-Piston Engines: A Systematic Review and Meta-Analysis," Energies, MDPI, vol. 14(12), pages 1-23, June.
    6. Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
    7. Geng, Heming & Wang, Yang & Zhen, Xudong & Liu, Yu & Li, Zhiyong, 2018. "Study on adaptive behavior and mechanism of compression ratio (or piston motion profile) for combustion parameters in hydraulic free piston engine," Applied Energy, Elsevier, vol. 211(C), pages 921-928.
    8. Tripathi, Abhinav & Zhang, Chen & Sun, Zongxuan, 2018. "A multizone model of the combustion chamber dynamics in a controlled trajectory rapid compression and expansion machine (CT-RCEM)," Applied Energy, Elsevier, vol. 231(C), pages 179-193.
    9. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    11. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    12. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
    13. Jiao, Yong & Tian, Wenjuan & Chen, Huili & Shi, Huangang & Yang, Binbin & Li, Chao & Shao, Zongping & Zhu, Zhenping & Li, Si-Dian, 2015. "In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance," Applied Energy, Elsevier, vol. 141(C), pages 200-208.
    14. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    15. Melanie Kuhn & Teko W. Napporn, 2010. "Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins to Today’s State of the Art," Energies, MDPI, vol. 3(1), pages 1-78, January.
    16. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    17. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    18. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    19. Zhang, Yan & Yang, Binbin & Ji, Deliang & Hou, Xiaochen & Zhao, Bo & Zhang, Tiezhu, 2023. "Integrated simulation and performance analysis of Confined Piston Linear Generator (CPLG)," Energy, Elsevier, vol. 282(C).
    20. Zhang, Chen & Sun, Zongxuan, 2016. "Using variable piston trajectory to reduce engine-out emissions," Applied Energy, Elsevier, vol. 170(C), pages 403-414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:805-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.