IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6570-d1238347.html
   My bibliography  Save this article

Research on Piston Dynamics and Engine Performances of a Free-Piston Engine Linear Generator Coupling with Various Rebound Devices

Author

Listed:
  • Chendong Guo

    (College of Electrical and Mechanical Engineering, Beijing Information Science and Technology University, Beijing 100192, China
    School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Yahui Wang

    (College of Electrical and Mechanical Engineering, Beijing Information Science and Technology University, Beijing 100192, China)

  • Liang Tong

    (College of Electrical and Mechanical Engineering, Beijing Information Science and Technology University, Beijing 100192, China)

  • Huihua Feng

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Zhengxing Zuo

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Boru Jia

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    Department of Engineering, Durham University, Durham DH1 3LE, UK)

Abstract

Free-piston engine linear generators (FPELGs) are an innovative linear power device that exhibits the distinctive dynamics of pistons and performance of free-piston engines. Furthermore, the single-cylinder/single-piston FPELG structure type has more advantages than other FPELG structure types, including a straightforward structure and ease of control. However, when coupled with various rebound devices, the operational characteristics and piston and engine performance of single-cylinder/single-piston FPELGs are quite different. Therefore, this paper aims to quantitatively compare the dynamics of the piston and engine performance of single-cylinder/single-piston FPELGs coupled with various types of rebound device. The results indicate that when the equivalent stiffness of the gas spring is greater than that of the mechanical spring, the operating frequency of the piston of the FPELG coupled with a gas spring will be higher than that when coupled with a mechanical spring. During the compression stroke, the piston velocity of a FPELG coupled with a mechanical spring changes linearly, while the piston velocity of a FPELG coupled with a gas spring changes nonlinearly. FPELGs coupled with gas springs have shorter compression and expansion durations compared to those coupled with mechanical springs. In addition, the indicated powers of FPELGs coupled with ideal gas springs and mechanical springs are 1.5 kW and 1.3 kW, respectively. However, due to leakage, the thermal efficiency of a FPELG coupled with an actual gas spring is reduced by approximately 2.5% compared with the FPELG coupled with the ideal gas spring. Furthermore, the operation frequency of the piston is positively correlated with the stiffness of the mechanical spring. In addition, as the stiffness of the mechanical spring increases, the combustion process of the engine becomes close to an isovolumetric process. The changes in piston dynamics and engine performance when increasing the initial gas pressure of the gas spring are similar to those when increasing the stiffness of the mechanical spring.

Suggested Citation

  • Chendong Guo & Yahui Wang & Liang Tong & Huihua Feng & Zhengxing Zuo & Boru Jia, 2023. "Research on Piston Dynamics and Engine Performances of a Free-Piston Engine Linear Generator Coupling with Various Rebound Devices," Energies, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6570-:d:1238347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    2. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
    3. Mao, Jinlong & Zuo, Zhengxing & Li, Wen & Feng, Huihua, 2011. "Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation," Applied Energy, Elsevier, vol. 88(4), pages 1140-1152, April.
    4. Zhou, Yingcong & Sofianopoulos, Aimilios & Gainey, Brian & Lawler, Benjamin & Mamalis, Sotirios, 2019. "A system-level numerical study of a homogeneous charge compression ignition spring-assisted free piston linear alternator with various piston motion profiles," Applied Energy, Elsevier, vol. 239(C), pages 820-835.
    5. Yuan, Chenheng & He, Lei & Zhou, Lifu, 2022. "Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    2. Zhang, Yan & Yang, Binbin & Ji, Deliang & Hou, Xiaochen & Zhao, Bo & Zhang, Tiezhu, 2023. "Integrated simulation and performance analysis of Confined Piston Linear Generator (CPLG)," Energy, Elsevier, vol. 282(C).
    3. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    4. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    5. Jia, Boru & Zuo, Zhengxing & Feng, Huihua & Tian, Guohong & Smallbone, Andrew & Roskilly, A.P., 2016. "Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: Simulation and test results," Applied Energy, Elsevier, vol. 164(C), pages 532-539.
    6. Wu, Limin & Feng, Huihua & Jia, Boru & Tang, Zhifeng & Yan, Xiaodong & Wang, Wei, 2022. "A novel method to investigate the power generation characteristics of linear generator in full frequency operation range applied to opposed-piston free-piston engine generator _ Simulation and test re," Energy, Elsevier, vol. 254(PB).
    7. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    8. Huihua Feng & Yuyao Guo & Yu Song & Chendong Guo & Zhengxing Zuo, 2016. "Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process," Energies, MDPI, vol. 9(6), pages 1-19, June.
    9. Ayodeji Sowale & Edward J. Anthony & Athanasios John Kolios, 2018. "Optimisation of a Quasi-Steady Model of a Free-Piston Stirling Engine," Energies, MDPI, vol. 12(1), pages 1-17, December.
    10. Yan, Xiaodong & Feng, Huihua & Zuo, Zhengxing & Zhang, Zhiyuan & Wu, Limin & Shi, Cheng, 2021. "A study on the working characteristics of free piston linear generator with dual cylinder configuration by different secondary injection strategies," Energy, Elsevier, vol. 233(C).
    11. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    12. Jia, Boru & Smallbone, Andrew & Feng, Huihua & Tian, Guohong & Zuo, Zhengxing & Roskilly, A.P., 2016. "A fast response free-piston engine generator numerical model for control applications," Applied Energy, Elsevier, vol. 162(C), pages 321-329.
    13. Liu, Chang & Zhang, Zhiyuan & Ren, Peirong & Wei, Yidi & Jia, Boru & Zuo, Zhengxing & Wang, Wei & Feng, Huihua, 2024. "Application of semi-direct fuel injection system to free piston engine generator for better performance: Simulation approach with validation results," Energy, Elsevier, vol. 298(C).
    14. Ayodeji Sowale & Athanasios J. Kolios, 2018. "Thermodynamic Performance of Heat Exchangers in a Free Piston Stirling Engine," Energies, MDPI, vol. 11(3), pages 1-20, February.
    15. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    16. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
    17. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    18. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    19. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    20. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6570-:d:1238347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.