A design method based on neural network to predict thermoacoustic Stirling engine parameters: Experimental and theoretical assessment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.133113
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
- Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
- Hooshang, M. & Askari Moghadam, R. & Alizadeh Nia, S. & Masouleh, M. Tale, 2015. "Optimization of Stirling engine design parameters using neural networks," Renewable Energy, Elsevier, vol. 74(C), pages 855-866.
- Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.
- Tavakolpour-Saleh, A.R. & Jokar, H., 2016. "Neural network-based control of an intelligent solar Stirling pump," Energy, Elsevier, vol. 94(C), pages 508-523.
- S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
- Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
- Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
- Zare, Shahryar & Tavakolpour-Saleh, A.R. & Binazadeh, T., 2023. "Analytical investigation of free piston Stirling engines using practical stability method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Abdur Rehman Mazhar & Yongliang Shen & Shuli Liu, 2024. "Viability of low‐grade heat conversion using liquid piston Stirling engines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
- Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
- Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
- Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
- Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
- Wu, Haifeng & Liu, Qibin & Xie, Gengxin & Guo, Shaopeng & Zheng, Jie & Su, Bosheng, 2020. "Performance investigation of a novel hybrid combined cooling, heating and power system with solar thermochemistry in different climate zones," Energy, Elsevier, vol. 190(C).
- Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
- Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
- Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
- Mathias Scheunert & Robin Masser & Abdellah Khodja & Raphael Paul & Karsten Schwalbe & Andreas Fischer & Karl Heinz Hoffmann, 2020. "Power-Optimized Sinusoidal Piston Motion and Its Performance Gain for an Alpha-Type Stirling Engine with Limited Regeneration," Energies, MDPI, vol. 13(17), pages 1-19, September.
- Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1, June.
- Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
- Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
- Li, Linyu & Wu, Zhanghua & Hu, Jianying & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2016. "A novel heat-driven thermoacoustic natural gas liquefaction system. Part I: Coupling between refrigerator and linear motor," Energy, Elsevier, vol. 117(P2), pages 523-529.
- Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
- Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
- Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
- Tavakolpour-Saleh, A.R., 2021. "A novel theorem on motion stability," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
More about this item
Keywords
Thermoacoustic stirling engine; Artificial neural network (ANN); Renewable energy; Instability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028883. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.