Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.116912
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhu, Shunmin & Yu, Guoyao & Ma, Ying & Cheng, Yangbin & Wang, Yalei & Yu, Shaofei & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2019. "A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy," Applied Energy, Elsevier, vol. 242(C), pages 1248-1258.
- Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
- Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
- Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
- Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.
- Vuarnoz, D. & Kitanovski, A. & Gonin, C. & Borgeaud, Y. & Delessert, M. & Meinen, M. & Egolf, P.W., 2012. "Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat," Applied Energy, Elsevier, vol. 100(C), pages 229-237.
- Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ye, Wenlian & Zhang, Ting & Wang, Xiaojun & Liu, Yingwen & Chen, Pengfan, 2020. "Parametric study of gamma-type free piston stirling engine using nonlinear thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 211(C).
- Jiang, Han & Xi, Zhongli & A. Rahman, Anas & Zhang, Xiaoqing, 2020. "Prediction of output power with artificial neural network using extended datasets for Stirling engines," Applied Energy, Elsevier, vol. 271(C).
- Huang, Mengqi & Peng, Changhong & DU, Zhengyu & Liu, Yu, 2024. "A power regulation strategy for heat pipe cooled reactors based on deep learning and hybrid data-driven optimization algorithm," Energy, Elsevier, vol. 289(C).
- Chen, Pengfan & Zhong, Geyu & Niu, Yafeng & Liu, Yingwen, 2022. "Performance optimization of a free piston stirling engine using multi-section regenerators based on the response surface methodology," Energy, Elsevier, vol. 261(PB).
- Chang, Depeng & Hu, Jianying & Sun, Yanlei & Zhang, Limin & Chen, Yanyan & Luo, Ercang, 2023. "Numerical investigation on key parameters of a double-acting free piston Stirling generator," Energy, Elsevier, vol. 278(PB).
- Chen, Pengfan & Yang, Peng & Liu, Liu & Liu, Yingwen, 2021. "Parametric investigation of the phase characteristics of a beta-type free piston Stirling engine based on a thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 219(C).
- Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
- Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
- Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
- Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
- Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
- Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
- Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
- Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
- Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
- Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
- Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
- Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
- Hu, Luoke & Peng, Chen & Evans, Steve & Peng, Tao & Liu, Ying & Tang, Renzhong & Tiwari, Ashutosh, 2017. "Minimising the machining energy consumption of a machine tool by sequencing the features of a part," Energy, Elsevier, vol. 121(C), pages 292-305.
- Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
- Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
- Zhao, Dan & Ji, Chenzhen & Li, Shihuai & Li, Junwei, 2014. "Thermodynamic measurement and analysis of dual-temperature thermoacoustic oscillations for energy harvesting application," Energy, Elsevier, vol. 65(C), pages 517-526.
- Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
- Alireza Taghdisian & Sandra G. F. Bukkens & Mario Giampietro, 2022. "A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
- Han, Jee-Hoon & Lee, In-Beum, 2014. "A systematic process integration framework for the optimal design and techno-economic performance analysis of energy supply and CO2 mitigation strategies," Applied Energy, Elsevier, vol. 125(C), pages 136-146.
More about this item
Keywords
Free piston stirling engine; Artificial neural network; Dynamic performance prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300190. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.