IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921008102.html
   My bibliography  Save this article

Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine

Author

Listed:
  • Liu, Jinlong
  • Huang, Qiao
  • Ulishney, Christopher
  • Dumitrescu, Cosmin E.

Abstract

Exhaust gas temperature is a key parameter for optimizing engine performance and emissions. Of particular interest is forecasting the exhaust gas temperature in a diesel engine converted to spark ignition natural gas operation, as the combustion process in this engine is significantly different from the one in a conventional engine. The goal was to assess four different machine learning algorithms namely the artificial neural network, random forest, support vector regression, and gradient boosting regression trees, with respect to a physical 1D CFD model and relative to one another, when predicting the exhaust temperature. The spark timing, equivalence ratio, and engine speed were model inputs. First, the artificial neural network predicted the exhaust temperature more accurately than the physical model, because of the complex premixed combustion phenomena inside a conventional diesel chamber. When compared relative to one another, all machine learning models predicted the exhaust gas temperature with acceptable error while also capturing its relationship with the three model inputs. The gradient boosting regression trees predicted the best, but it usually requires high quality noise-free data. The random forest had the least accuracy, but it required the least amount of calibration. The support vector regression had the smallest error, but it required the highest computational resources. The artificial neural network algorithm was the most appropriate, but it required effort in tuning its hyperparameters. Overall, the results showed that well-trained machine learning models can complement more complex physical model while also helping with optimizing the engine performance, emissions, and life.

Suggested Citation

  • Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008102
    DOI: 10.1016/j.apenergy.2021.117413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Li, Yu & Li, Hailin & Guo, Hongsheng & Li, Yongzhi & Yao, Mingfa, 2017. "A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model," Applied Energy, Elsevier, vol. 205(C), pages 153-162.
    3. Agarwal, Deepak & Singh, Shrawan Kumar & Agarwal, Avinash Kumar, 2011. "Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine," Applied Energy, Elsevier, vol. 88(8), pages 2900-2907, August.
    4. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    5. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    6. Kara Togun, Necla & Baysec, Sedat, 2010. "Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks," Applied Energy, Elsevier, vol. 87(1), pages 349-355, January.
    7. Dehghani Firoozabadi, M. & Shahbakhti, M. & Koch, C.R. & Jazayeri, S.A., 2013. "Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine," Applied Energy, Elsevier, vol. 110(C), pages 236-243.
    8. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    9. Yusaf, Talal F. & Buttsworth, D.R. & Saleh, Khalid H. & Yousif, B.F., 2010. "CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network," Applied Energy, Elsevier, vol. 87(5), pages 1661-1669, May.
    10. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    11. Deh Kiani, M. Kiani & Ghobadian, B. & Tavakoli, T. & Nikbakht, A.M. & Najafi, G., 2010. "Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends," Energy, Elsevier, vol. 35(1), pages 65-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sok, Ratnak & Jeyamoorthy, Arravind & Kusaka, Jin, 2024. "Novel virtual sensors development based on machine learning combined with convolutional neural-network image processing-translation for feedback control systems of internal combustion engines," Applied Energy, Elsevier, vol. 365(C).
    2. Pinyi Su & Muhammad Imran & Muhammad Nadeem & Shamsheer ul Haq, 2023. "The Role of Environmental Law in Farmers’ Environment-Protecting Intentions and Behavior Based on Their Legal Cognition: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    3. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    4. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    5. Ruomiao Yang & Tianfang Xie & Zhentao Liu, 2022. "The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines," Energies, MDPI, vol. 15(9), pages 1-16, April.
    6. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    7. Yuan, Chenheng & He, Lei & Zhou, Lifu, 2022. "Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine," Energy, Elsevier, vol. 254(PA).
    8. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    9. Cao, Jiale & Li, Tie & Huang, Shuai & Chen, Run & Li, Shiyan & Kuang, Min & Yang, Rundai & Huang, Yating, 2023. "Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning," Applied Energy, Elsevier, vol. 352(C).
    10. Okeleye, Samuel Adeola & Thiruvengadam, Arvind & Perhinschi, Mario G. & Carder, Daniel, 2024. "Data-driven machine learning model of a Selective Catalytic Reduction on Filter (SCRF) in a heavy-duty diesel engine: A comparison of Artificial Neural Network with Tree-based algorithms," Energy, Elsevier, vol. 290(C).
    11. Wang, Yuhua & Wang, Guiyong & Yao, Guozhong & Shen, Qianqiao & Yu, Xuan & He, Shuchao, 2023. "Combining GA-SVM and NSGA-Ⅲ multi-objective optimization to reduce the emission and fuel consumption of high-pressure common-rail diesel engine," Energy, Elsevier, vol. 278(PA).
    12. Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
    13. Fei, Mingda & Zhang, Zhenyu & Zhao, Wenbo & Zhang, Peng & Xing, Zhaolin, 2024. "Optimal power distribution control in modular power architecture using hydraulic free piston engines," Applied Energy, Elsevier, vol. 358(C).
    14. Irfan Javid & Rozaida Ghazali & Waddah Saeed & Tuba Batool & Ebrahim Al-Wajih, 2023. "CNN with New Spatial Pyramid Pooling and Advanced Filter-Based Techniques: Revolutionizing Traffic Monitoring via Aerial Images," Sustainability, MDPI, vol. 16(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahri, Bahram & Shahbakhti, Mahdi & Kannan, Kaushik & Aziz, Azhar Abdul, 2016. "Identification of ringing operation for low temperature combustion engines," Applied Energy, Elsevier, vol. 171(C), pages 142-152.
    2. Mohamed Ismail, Harun & Ng, Hoon Kiat & Queck, Cheen Wei & Gan, Suyin, 2012. "Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends," Applied Energy, Elsevier, vol. 92(C), pages 769-777.
    3. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    4. Yusaf, T.F. & Yousif, B.F. & Elawad, M.M., 2011. "Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches," Energy, Elsevier, vol. 36(8), pages 4871-4878.
    5. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    6. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    7. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    8. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    9. Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
    10. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    11. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    12. Yusri, I.M. & Abdul Majeed, A.P.P. & Mamat, R. & Ghazali, M.F. & Awad, Omar I. & Azmi, W.H., 2018. "A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 665-686.
    13. Song Hu & Stefano d’Ambrosio & Roberto Finesso & Andrea Manelli & Mario Rocco Marzano & Antonio Mittica & Loris Ventura & Hechun Wang & Yinyan Wang, 2019. "Comparison of Physics-Based, Semi-Empirical and Neural Network-Based Models for Model-Based Combustion Control in a 3.0 L Diesel Engine," Energies, MDPI, vol. 12(18), pages 1-41, September.
    14. Zhao, Jinxing & Xu, Min & Li, Mian & Wang, Bin & Liu, Shuangzhai, 2012. "Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method," Applied Energy, Elsevier, vol. 92(C), pages 492-502.
    15. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
    16. Farzad Jaliliantabar & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Artificial Neural Network Modeling and Sensitivity Analysis of Performance and Emissions in a Compression Ignition Engine Using Biodiesel Fuel," Energies, MDPI, vol. 11(9), pages 1-24, September.
    17. Dhahad, Hayder Abed & Hasan, Ahmed Mudheher & Chaichan, Miqdam Tariq & Kazem, Hussein A., 2022. "Prognostic of diesel engine emissions and performance based on an intelligent technique for nanoparticle additives," Energy, Elsevier, vol. 238(PB).
    18. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    19. Yap, Wai Kean & Karri, Vishy, 2011. "ANN virtual sensors for emissions prediction and control," Applied Energy, Elsevier, vol. 88(12), pages 4505-4516.
    20. Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2014. "Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm," Energy, Elsevier, vol. 71(C), pages 656-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.