IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024782.html
   My bibliography  Save this article

Experimental study on the power generation characteristics of a free piston engine generator prototype with dual linear generator modules

Author

Listed:
  • Li, Jian
  • Zuo, Zhengxing
  • Jia, Boru
  • Wei, Yidi
  • Ma, Yuguo
  • Xu, Lei
  • Wang, Jiayu
  • Zhang, Zhiyuan
  • Feng, Huihua

Abstract

The dual-piston dual-cylinder free piston engine generator (DD-FPEG) has garnered significant attention for its high thermal efficiency, power density, and suitability for various fuels. To improve performance and stability, this paper proposes a DD-FPEG prototype integrating dual linear generator (LG) modules. The structure and working process of the prototype is introduced, followed by testing its operating characteristics and power generation performance from the cold start to power generation process. When LG1 operates in motor mode, and LG2 operates in generation mode with no load, the motor thrust must exceed 126 N to ensure piston movement. As the motor thrust decreases from 221 N to 0 N and then switches to generation mode, the peak cylinder pressure, operating frequency, output voltage and power show a decreasing trend. The coefficients of variation for peak cylinder pressure position, top and bottom dead center positions are lower than that of peak cylinder pressure, and their values are below 3 %. When the load is 50 Ω, the prototype operates at about 31.2 Hz, with an average indicated power of 1422.8 W and a peak output power of about 1002.5 W. These results demonstrate that the proposed control strategy enables the designed prototype to achieve stable operation and smooth switching.

Suggested Citation

  • Li, Jian & Zuo, Zhengxing & Jia, Boru & Wei, Yidi & Ma, Yuguo & Xu, Lei & Wang, Jiayu & Zhang, Zhiyuan & Feng, Huihua, 2024. "Experimental study on the power generation characteristics of a free piston engine generator prototype with dual linear generator modules," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024782
    DOI: 10.1016/j.energy.2024.132704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 1: Fundamental analyses," Applied Energy, Elsevier, vol. 87(4), pages 1273-1280, April.
    2. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    3. Li, Jian & Zuo, Zhengxing & Jia, Boru & Feng, Huihua & Mei, Bingang & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Operating characteristics and design parameter optimization of permanent magnet linear generator applied to free-piston energy converter," Energy, Elsevier, vol. 287(C).
    4. Zhou, Yingcong & Sofianopoulos, Aimilios & Gainey, Brian & Lawler, Benjamin & Mamalis, Sotirios, 2019. "A system-level numerical study of a homogeneous charge compression ignition spring-assisted free piston linear alternator with various piston motion profiles," Applied Energy, Elsevier, vol. 239(C), pages 820-835.
    5. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    6. Boru Jia & Zhengxing Zuo & Andrew Smallbone & Huihua Feng & Anthony Paul Roskilly, 2017. "A Decoupled Design Parameter Analysis for Free-Piston Engine Generators," Energies, MDPI, vol. 10(4), pages 1-14, April.
    7. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    8. Fu-Kang Ma & Jun Wang & Yao-Nan Feng & Yan-Gang Zhang & Tie-Xiong Su & Yi Zhang & Yu-Hang Liu, 2017. "Parameter Optimization on the Uniflow Scavenging System of an OP2S-GDI Engine Based on Indicated Mean Effective Pressure (IMEP)," Energies, MDPI, vol. 10(3), pages 1-20, March.
    9. Zhang, Zhiyuan & Feng, Huihua & He, Hongwen & Jia, Boru & Zuo, Zhengxing & Liu, Chang & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Demonstration of a single/dual cylinder free-piston engine generator prototype: Milestone achieved on system stability," Energy, Elsevier, vol. 278(PA).
    10. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control," Applied Energy, Elsevier, vol. 87(4), pages 1281-1287, April.
    11. Chendong Guo & Yahui Wang & Liang Tong & Huihua Feng & Zhengxing Zuo & Boru Jia, 2023. "Research on Piston Dynamics and Engine Performances of a Free-Piston Engine Linear Generator Coupling with Various Rebound Devices," Energies, MDPI, vol. 16(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    2. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    3. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    4. Zhang, Yan & Yang, Binbin & Ji, Deliang & Hou, Xiaochen & Zhao, Bo & Zhang, Tiezhu, 2023. "Integrated simulation and performance analysis of Confined Piston Linear Generator (CPLG)," Energy, Elsevier, vol. 282(C).
    5. Ziwei Zhang & Huihua Feng & Zhengxing Zuo, 2020. "Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator," Energies, MDPI, vol. 13(18), pages 1-16, September.
    6. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    7. Chi Zhang & Feixue Chen & Long Li & Zhaoping Xu & Liang Liu & Guilin Yang & Hongyuan Lian & Yingzhong Tian, 2018. "A Free-Piston Linear Generator Control Strategy for Improving Output Power," Energies, MDPI, vol. 11(1), pages 1-21, January.
    8. Jia, Boru & Wei, Shuojian & Liu, Chang & Zhang, Zhiyuan & Wei, Yidi & Wang, Jiayu & Feng, Huihua & Zuo, Zhengxing, 2024. "Numerical investigation on the cold-start/restart process of a linear range extender for faster response," Energy, Elsevier, vol. 299(C).
    9. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    10. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    11. Dmitry Petrichenko & Alexey Tatarnikov & Igor Papkin, 2015. "Approach to Electromagnetic Control of the Extreme Positions of a Piston in a Free Piston Generator," Modern Applied Science, Canadian Center of Science and Education, vol. 9(1), pages 119-119, January.
    12. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    13. Jia, Boru & Smallbone, Andrew & Mikalsen, Rikard & Feng, Huihua & Zuo, Zhengxing & Roskilly, Anthony Paul, 2017. "Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model," Applied Energy, Elsevier, vol. 185(P1), pages 440-451.
    14. Fukang Ma & Shuanlu Zhang & Zhenfeng Zhao & Yifang Wang, 2021. "Research on the Operating Characteristics of Hydraulic Free-Piston Engines: A Systematic Review and Meta-Analysis," Energies, MDPI, vol. 14(12), pages 1-23, June.
    15. Hung, Nguyen Ba & Lim, Ocktaeck & Iida, Norimasa, 2015. "The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine," Applied Energy, Elsevier, vol. 137(C), pages 385-401.
    16. Yuan, Chenheng & Lu, Jiangchuan & Li, Shilei, 2023. "Thermoelectric coupling effect of secondary injection on gasoline fuel spray and mixing of a free vibration combustion alternator," Energy, Elsevier, vol. 281(C).
    17. Huihua Feng & Yu Song & Zhengxing Zuo & Jiao Shang & Yaodong Wang & Anthony Paul Roskilly, 2015. "Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments," Energies, MDPI, vol. 8(2), pages 1-21, January.
    18. Alex G. Young & Aaron W. Costall & Daniel Coren & James W. G. Turner, 2021. "The Effect of Crankshaft Phasing and Port Timing Asymmetry on Opposed-Piston Engine Thermal Efficiency," Energies, MDPI, vol. 14(20), pages 1-20, October.
    19. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.
    20. Ahsan Bashir & Saiful A. Zulkifli & Abd Rashid Abd Aziz & Ezrann ZZ Abidin, 2021. "Impact of Combustion Variance on Sustainability of Free-Piston Linear Generator during Steady-State Generation," Energies, MDPI, vol. 14(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.